Computer Networks

Frank Walsh

Agenda

- Computer Network Components
- Device Types
- Protocols
- Topologies
- Internet of Things

Networks

- Devices \& Machines are effective/beautiful in isolation...
- Connecting machine/ device to a computer network creates amazing possibilities...
- Key point:
- Computer networks are no longer only used to connect computers
- Part of many aspects of everyday life

QI: Arpanet

- US government responds to launch of Sputnik by setting up ARPA, the Advanced Research Projects Agency
- ARPANET created in 1969 connecting computers in UCLA and Stanford
- In 1973, it was called the "internetwork" or "internet" for short

QI: How heavy is the internet?

- about the same as a grain of sand...
- "In terms of data, if every bit of information stored in silicon comprises 40,000 electrons, the total weight of all the information flowing across the internet - books, music, photographs, emails, orders - is two millionths of an ounce"

"Fixed" Computing	Mobility/BYOD (You go to the (The device)	Internet of Things (Age of Devices)	Internet of Everything
	with you)		(People, Process,
		Data, Things)	

Networks - Under the bonnet

- Inherently Physical:
- Devices need some form of physical channel to communicate
- Devices need specific hardware to use that channel (eg. antenna and associated electronics)

Networks - Under the bonnet

- Once connected, it can get complicated!

- Sophisticated combination of protocols, software, hardware, algorithms, configurations, policies...
- Security, privacy, access, quality of service, wired/wireless...

Elements of a Network

Device Types

- End Devices

- Infrastructure Devices

Physical Medium

- Wired

- Wireless

Network Topology

Physical Topology

Logical Topology

Network Topology
What connection

Ring
to use?

Mesh

Star

Tree

Messages

- Data is divided into smaller parts during transmission
- Segmentation
- The benefits of doing so:
- Many different conversations can be interleaved on the network(multiplexing)
- Increases reliability of network communications.
- The separate pieces of each message need not travel the same pathway across the network from source to destination
- Adds complexity however:
- Addressing, labeling, sending, receiving.
- Reassembling
- NEED RULES FOR THIS...

Rules

- Humans have generally accepted protocols for interaction:
- Identified sender and receiver
- Agreed upon method of communicating (face-toface, telephone...)
- Common language and grammar
- Speed and timing of delivery
- Confirmation or acknowledgement requirements
- All communication activity on the Internet is governed by protocols

Human Protocol

Network Protocols

- Machines rather than humans
- All communication activity in Internet governed by protocols
- Protocols define
- Format, order of msgs sent and received among network entities
- Actions taken on msg transmission, receipt

Computer A

Network Characteristics

- Network architecture refers to:
- the technologies that support the infrastructure
- The programmed services and protocols that move the messages across that infrastructure
- 4 general characteristics to meet user expectations
- Fault tolerance
- Scalability
- Quality of service (QoS)
- Security

Typical Home Network

Some Networking Vocabulary

- Network Interface: any kind of software interface to networking hardware. (e.g. wifi interface and wired interface) A network interface may be associated with a physical device, or it may be a representation of a virtual interface. (e.g. interfaces on your virtual machines)
- LAN: Local Area Network refers to a network or a portion of a network that is not publicly accessible to the greater internet.
- WAN: Wide Area Network. Much Larger and extensive than a LAN. Often used to refer to the Internet, as a whole.
- Node: General term usually for a device on a network. Every node has a unique network address.
- Media Access Control(MAC): Used to distinguish specific devices. A unique address that each device is assigned during manufacturing. Used to differentiates it from every other device on the internet. Typically, each network interface has a MAC address.
- IP: protocols that allow the internet to work. IP addresses are unique on each network and they allow machines to address each other across a network.

Key Points so far

- Networks are everywhere
- 4 Components of every network
- Devices
- Medium
- Protocols (Rules)
- Messages (Data)
- Networks are connecting everything (not just for PCs/Laptops)
- Networks have a Topology
- Some key characteristics of a network

Internet of Things

- Internet \rightarrow The worldwide network of interconnected computer networks, based on a standard communication protocol (TCP/IP).
- Thing \rightarrow An object not precisely identifiable.
- Internet of Things (IoT) \rightarrow A worldwide network of interconnected objects uniquely addressable, based on standard communication protocol.

What's the difference...

- Extending the current Internet and providing connection, communication, and internetworking between devices and physical objects, or "Things," (even biological things!)

https://www.capitatranslationinterpreting.com/the-internet-of-things/

IoT Evolution

- Started with connectivity among people for sharing information.
- Led to a "flat-world" where everyone across the world is connected.
- Advancement in cloud computing and immersive experience led towards universal accessibility of data.
- Combination of immersive experiences, connectivity and advancement in electronics further leading to Internet of Everything (loE)

Intelligent Connections
Source: Cisco

IoT Market

- As of 2015, 25 billion IoT units
- Expected to grow to 50 billion IoT devices by 2020

IoT Potential

- Conservatively $\rightarrow 20$ billion newly connected devices will be deployed.
- First public website went live at CERN in 1990.
- It took 15 years to reach 1 billion people on earth over the internet.
- IoT is looking to add 6 billion connected devices per year.
- Economic impact
- New revenue streams
- Reducing costs
- Reducing time to market
- Improving supply chain
- Reducing production loss
- Increasing productivity

IoT and Big Data

- A full 90% of all the data in the world has been generated over the last two years.
- Sources
- Physical Environment
- Smartphones \& wearables
- Online presence

User Interface Devices

Building Blocks of an loT System

- Sensing
- Connectivity
- Gateways
- Processing
- Software
- Power

Control and Monitoring

Tablet, Smart Watch, etc.

Where does

 networking come in...- The Role of Communications
- Providing a data link between two nodes
- Communication type:
- Wireline (e.g. copper wires, optical fibers)
- Wireless (e.g. RF, IR). RF-based communication is the most popular choice
- Popular RF-based communication solutions:
- IEEE 802.15.4
- IEEE 802.11 (or Wi-Fi)
- Bluetooth
- Near Field Communication (NFC), e.g. RFID

Networking and IoT

- The Roles of Networks
- Managing connected devices (discovery, join, leave, etc).
- Relaying data packets from the source to the destination node in the network.
- IoT is a distributed system. All nodes need to perform networking related tasks.
- Main concerns as before: Reliability, Performance,
 Security, QOS, Scalability

Connected Car

Learning about Networks/loT

- Can't create complex networks at home however you can create "virtual networks"
- Virtualbox hypervisor
- Vagrant
- Can use programmable, multichannel, prototyping device to investigate different mediums, protocols, loT etc.
- Raspberry Pi has bluetooth, Wifi, Ethernet, SPI, I2C...

