Computer Networks

Frank Walsh

Agenda

- Computer Network Components
- Device Types
- Protocols
- Topologies
- Internet of Things

Networks

- Devices & Machines are effective/beautiful in isolation...
- Connecting machine/ device to a computer network creates amazing possibilities...
- Key point:
 - Computer networks are no longer only used to connect computers
 - Part of many aspects of everyday life

QI: Arpanet

- US government responds to launch of Sputnik by setting up ARPA, the Advanced Research Projects Agency
- ARPANET created in 1969 connecting computers in UCLA and Stanford
- In 1973, it was called the "internetwork" or "internet" for short

QI: How heavy is the internet?

- about the same as a grain of sand...
 - "In terms of data, if every bit of information stored in silicon comprises 40,000 electrons, the total weight of all the information flowing across the internet – books, music, photographs, emails, orders – is two millionths of an ounce"

Source: http://discovermagazine.com/2007/jun/how-much-does-the-internet-weigh

Networks - Under the bonnet

- Inherently Physical:
 - Devices need some form of physical channel to communicate
 - Devices need specific hardware to use that channel (eg. antenna and associated electronics)

Networks – Under the bonnet

- Once connected, it can get complicated!
- Sophisticated combination of protocols, software, hardware, algorithms, configurations, policies...
- Security, privacy, access, quality of service, wired/wireless...

Elements of a Network

Device Types

• End Devices

• Infrastructure Devices

Physical Medium

• Wired

• Wireless

Network Topology

Physical Topology

Messages

- Data is divided into smaller parts during transmission
 - Segmentation
- The benefits of doing so:
 - Many different conversations can be interleaved on the network(multiplexing)
 - Increases reliability of network communications.
 - The separate pieces of each message need not travel the same pathway across the network from source to destination
- Adds complexity however:
 - Addressing, labeling, sending, receiving.
 - Reassembling
- NEED RULES FOR THIS...

Rules

- Humans have generally accepted protocols for interaction:
 - Identified sender and receiver
 - Agreed upon method of communicating (face-toface, telephone...)
 - Common language and grammar
 - Speed and timing of delivery
 - Confirmation or acknowledgement requirements
- All communication activity on the Internet is governed by protocols

Human Protocol

Network Protocol

Network Protocols

- Machines rather than humans
- All communication activity in Internet governed by protocols
- Protocols define
 - Format, order of msgs sent and received among network entities
 - Actions taken on msg transmission, receipt

Network Characteristics

- Network architecture refers to:
 - the technologies that support the infrastructure
 - The programmed services and protocols that move the messages across that infrastructure
- 4 general characteristics to meet user expectations
 - Fault tolerance
 - Scalability
 - Quality of service (QoS)
 - Security

Typical Home Network

Source: https://techterms.com/definition/network

Some Networking Vocabulary

- Network Interface: any kind of software interface to networking hardware. (e.g. wifi interface and wired interface) A network interface may be associated with a physical device, or it may be a representation of a virtual interface. (e.g. interfaces on your virtual machines)
- LAN: Local Area Network refers to a network or a portion of a network that is not publicly accessible to the greater internet.
- WAN: Wide Area Network. Much Larger and extensive than a LAN. Often used to refer to the Internet, as a whole.
- Node: General term usually for a device on a network. Every node has a unique network address.
- Media Access Control(MAC): Used to distinguish specific devices. A unique address that each device is assigned during manufacturing. Used to differentiates it from every other device on the internet. Typically, each network interface has a MAC address.
- IP: protocols that allow the internet to work. IP addresses are unique on each network and they allow machines to address each other across a network.

Key Points so far

- Networks are everywhere
- 4 Components of every network
 - Devices
 - Medium
 - Protocols (Rules)
 - Messages (Data)
- Networks are connecting everything (not just for PCs/Laptops)
- Networks have a Topology
- Some key characteristics of a network

Internet of Things

- Internet → The worldwide network of interconnected computer networks, based on a standard communication protocol (TCP/IP).
- Thing \rightarrow An object not precisely identifiable.
- Internet of Things (IoT) → A worldwide network of interconnected objects uniquely addressable, based on standard communication protocol.

What's the difference...

• Extending the current Internet and providing connection, communication, and internetworking between devices and physical objects, or "Things," (even biological things!)

https://www.capitatranslationinterpreting.com/the-internet-of-things/

IoT Evolution

- Started with connectivity among people for sharing information.
- Led to a "flat-world" where everyone across the world is connected.
- Advancement in cloud computing and immersive experience led towards universal accessibility of data.
- Combination of immersive experiences, connectivity and advancement in electronics further leading to <u>Internet of Everything (IoE)</u>

Source: Cisco

IoT Market

- As of 2015, 25 billion IoT units
- Expected to grow to 50 billion IoT devices by 2020

IoT Potential

- Conservatively \rightarrow 20 billion newly connected devices will be deployed.
- First public website went live at CERN in 1990.
 - It took 15 years to reach 1 billion people on earth over the internet.
 - IoT is looking to add 6 billion connected devices per year.
- Economic impact
 - New revenue streams
 - Reducing costs
 - Reducing time to market
 - Improving supply chain
 - Reducing production loss
 - Increasing productivity

IoT and Big Data

- A full 90% of all the data in the world has been generated over the last two years.
- Sources
 - Physical Environment
 - Smartphones & wearables
 - Online presence

Building Blocks of an IoT System

- Sensing
- Connectivity
- Gateways
- Processing
- Software
- Power

Where does networking come in...

- The Role of Communications
 - Providing a data link between two nodes

ANT+

ZigBee[®]

- Communication type:
 - Wireline (e.g. copper wires, optical fibers)
 - Wireless (e.g. RF, IR). RF-based communication is the most popular choice
- Popular RF-based communication solutions:
 - IEEE 802.15.4
 - IEEE 802.11 (or Wi-Fi)
 - Bluetooth
 - Near Field Communication (NFC), e.g. RFID

Wi Fi

Networking and IoT

- The Roles of Networks
 - Managing connected devices (discovery, join, leave, etc).
 - Relaying data packets from the source to the destination node in the network.
- IoT is a distributed system. All nodes need to perform networking related tasks.
- Main concerns as before: Reliability, Performance, Security, QOS, Scalability

Connected Car

Learning about Networks/IoT

- Can't create complex networks at home however you can create "virtual networks"
 - Virtualbox hypervisor
 - Vagrant
- Can use programmable, multichannel, prototyping device to investigate different mediums, protocols, IoT etc.
 - Raspberry Pi has bluetooth, Wifi, Ethernet, SPI, I2C...

