
  Shell Programming II 

  Page 1 

Shell Programming II1 
 
This self-paced tutorial sheet assumes knowledge of shell programming features discussed already, so please 
complete Part 1 first. 
 

Some useful text processing tools 
 
sort reorders the lines of the input 
e.g. $ nano cities 
 Dublin, Ireland 
 London, UK 
 Oslo, Norway 
 Lisbon, Portugal 

$ sort cities 
Dublin, Ireland 
Lisbon, Portugal 
London, UK 

 Oslo, Norway 
 

$ sort cities > cities2 (this would create a new file called “cities2” with the list sorted) 
 $ cat cities2 

Dublin, Ireland 
Lisbon, Portugal 
London, UK 

 Oslo, Norway 
 
grep searches for a specific pattern of characters within its input. If the pattern is found, it displays the 
line containing it. The pattern is more generally known as a regular expression, which allows for 
wildcards, etc. 
e.g. $ grep on cities 
 London, UK 
 Lisbon, Portugal 
 
The –i option of grep is useful (denotes case-insensitive) 
e.g. $ grep Lo cities 
 London, UK 
e.g. $ grep –i Lo cities 
 London, UK 
 Oslo, Norway 
 
awk is an entire text-processing language, but it is also very useful for some small tasks, such as for 
extracting pieces of text from a line returned by grep. 
e.g. $ grep on cities | awk '{print $2}' 

UK 
Portugal 
$ grep on cities | awk '{print $1}' 
London, 
Lisbon, 
$ grep on cities | awk –F, '{print $1}' 
London 
Lisbon 

 
 
find is a file search utility. It enables files conforming to some description to be found in the directory 
tree. 
e.g. $ find /home -name .bashrc 

/home/jmcgibney/.bashrc 
 

 
                                                           
1 Credits: This tutorial is adapted from the original version written by Willie Hayes. 

Note: nano is the command-line text editor 
used in these examples, but you may use any 
text editor you wish. For example gedit is a 
good graphical editor. Other popular text 
editors include vi (or vim) and emacs.   



  Shell Programming II 

  Page 2 

 
Effective use of “quotes” in the Shell 

 
Basically, there are four different types of quote characters that the shell recognises: 
 

1. The single quote character ' 
2. The double quote character " 
3. The backslash character \ 
4. The back quote character ` 

 
The first two characters and the last must appear in pairs to offer a practical use while programming 
within the shell. Each of these quote characters has a distinct meaning within the shell. To illustrate 
the difference between the quote characters, we will examine the outputs produced while working with 
our “Phone Book”.   
 
The “Phone Book” in this case, is a simple text file containing customer names and their associated 
phone numbers. The phone book takes the following format: 
 $ nano phonebook 
 Carlos Santana  086-45345099 
 Caroline Smith  01-2342689 
 Jimmy Page   051-23452334 
 Joe Walsh   087-567645123 
 Martina Blackmore  051-398475 
 Robert Plant  045-3560994 
 Robert Smith  045-4534534 

 
Single Quotes 
One use of quotes is to keep characters that are otherwise separated by whitespace (blanks) together. 
Lets look at an example using our phonebook as described above. 

To look someone up in our phonebook file – which has been kept small here for demonstration 
purposes, we would use the grep command. (grep is used to search for a specified pattern in a file) 
 $ grep Joe phonebook 
 Joe Walsh   087-567645123 
  

Look at what happens when we look up Robert: 
 $ grep Robert phonebook 
 Robert Plant  045-3560994 
 Robert Smith  045-4534534 
  
We have two entries in our phone book for Robert, thus explaining the two lines of output. One way 
to overcome this problem would be to further qualify the name. For example we could specify the last 
name as well. 
 $ grep Robert Plant phonebook 
 grep: Plant: No such file or directory 
 Robert Plant  045-3560994   
 Robert Smith  045-4534534 

 
So what’s all that about? 

Well, the first thing to recall is that the shell uses one or more white space characters to separate the 
arguments on the line, and the above command line results in grep being passed three arguments: 
Robert, Plant and phonebook. This is where we use our single quote characters. To prevent the 
shell from interpreting the Robert and Plant as two separate arguments, we can enclose them in 
single quotes. In this fashion the shell will interpret the string “Robert Plant” as a single argument 
while processing the grep command. So if we restructure our command as follows,  
 $ grep 'Robert Plant' phonebook 
 Robert Plant  045-3560994   



  Shell Programming II 

  Page 3 

we will retrieve the correct entry. In this case the shell encountered the first ‘, and ignored all special 
characters (i.e. the whitespace) which followed, until it encountered the closing ‘, thus treating all the 
text enclosed in the single quotes as a single argument. grep then took this argument (minus the quotes 
i.e. Robert Plant) and performed the usual grep search. 
 
Double Quotes 
Double quotes work similar to single quotes, except they are not quite so constrictive. Using single 
quotes we are telling the shell to ignore all enclosed text (with the quotes), whereas when we use 
double quotes we are telling the shell to ignore most characters. In particular the following three 
characters are not ignored by the shell when enclosed in double quotes 

1. Dollar sign $ 
2. Back quote  ` 
3. Backslash  \ 

The fact that dollar signs are not ignored means that variable substitution is done by the shell in double 
quotes. 
1. $ x='Robert Plant' 
 $ echo '$x' 
 $x 

2. $ echo "$x" 
Robert Plant 

3. $ grep "$x" phonebook 
Robert Plant  045-3560994 

 
The Backslash 
Basically, the back slash is equivalent to placing single quotes around a single character, with a few 
minor exceptions. The backslash quotes the single character that immediately follows it. The general 
format is: 
 \c 

where c is the character you want to quote. Any special meaning normally attached to that character is 
removed. Here are two examples: 

1. $ echo > 
bash: syntax error near unexpected token `newline' 

2. $ echo \> 
> 
$ 

 
In the first case (1), the shell saw the > and thought you wanted to redirect echo’s output to a file, so 
it was expecting a file name to follow. When it didn’t find one, it issued the error message. In the 
second instance, the \ removed the special meaning of the >, and simply passed the > character to 
echo to be displayed on screen. 
 

What is the output of executing the following command? 
$ echo "\$x" 

Can you explain why? 
 

 
Back Quotes 
The back quote is unlike any of the previously encountered quote characters. Its purpose is not to 
protect characters from the shell but to tell the shell to execute the enclosed command and to insert the 
output from the point on the command line. For example: 
 $ echo The date and time is: `date` 
 The date and time is: Thu Apr 24 18:50:52 IST 2014 



  Shell Programming II 

  Page 4 

When the shell does its initial scan of the command line, it notices the back quote and expects to the 
name of a command to follow. In this case, it finds the date command. So it executes date and 
replaces `date` on the command line with the output of date. 
 
 
 

Command Line Arguments 

Shell programs become much more useful when you learn how to process arguments passed to them 
via the command line. 

Up to this point, every time we have executed a shell program, the shell has automatically stored all 
the proceeding arguments in what is referred to as positional parameters, namely 1, 2, 3, etc. These 
parameters (arguments) can be referenced using the $ sign. For example if we had a shell program 
called findproc, which searches for processes running on the system (which we would specify on the 
command line), it could take the following format: 

$ ./findproc bash 

In this case, the shell assigns $1 to the string bash. In this form, we can then do the appropriate 
search on the logged-on users, performing a grep on $1. 

Okay, let’s create the above mentioned shell script.  

1. First of all create the file findproc 
$ nano findproc 
ps -ef | grep $1 
(save and exit; also make executable with chmod +x findproc) 
 

2. Execute the script passing to it your user name 
$ ./findproc bash 

Notice how the shell substitutes the value denoted by $1 and allows us to perform the grep.  
 
The $# Variable  
Whenever you execute a shell program, the special shell variable $# is set to the number of 
arguments that were passed to the script on the command line. This variable can then be tested by a 
program to determine if the user typed the correct number of arguments.  

Examine the output of the following shell script (args); it will help you get more familiar with the 
way in which arguments can be passed to a script. 

1. Create the shell program. 
$ nano args 

 echo $# arguments passed 
 echo arg 1 = $1    arg 2 = $2    arg 3 = $3 

(save, exit and make executable) 
2. Execute it 

$ ./args a b c 
 3 arguments passed 
 arg 1 = a    arg 2 = b    arg 3 = c 
3. Try it with 2 arguments 

$ ./args a b  
 2 arguments passed 
 arg 1 = a    arg 2 = b    arg 3 = 
4. Try it with 0 arguments 

$ ./args 
 0 arguments passed 
 arg 1 =     arg 2 =     arg 3 = 
5. Try it with double quotes 

$ ./args "a b c" 
 1 arguments passed 
 arg 1 = a b c   arg 2 =     arg 3 = 



  Shell Programming II 

  Page 5 

 
As you can see the shell does its normal command line processing, even when it’s executing your shell 
program. This means that you can take advantage of the normal niceties like filename substitution and 
variable substitution when specifying arguments to your programs. 
 
$# is often used to check that the user has entered the correct number of command line arguments.  

Example: 
 $ nano addnums 

# Sums two numbers supplied on the command line 
# 
if [ $# -ne 2 ] 
then 
    echo Please provide two command line arguments 
    echo Correct usage: 
    echo $0 num1 num2 
else 
    total=`expr $1 + $2` 
    echo The sum is $total 
fi 
 

Usage: 
$ ./addnums 7 16 
The sum is 23 
 

 
 
The $* Variable  
 
The special variable $* references all the arguments passed to a program. This is often useful in 
programs that take an indefinite or variable number of arguments. Therefore we could modify our args 
program as follows, which would now echo all the arguments passed to it, to the console. 
 

$ nano args 
echo $# arguments passed 

 echo they are $* 
(save, exit and make executable) 
 
$ ./args a b c d e f 
echo 6 arguments passed 
echo they are a b c d e f 

 
So, keeping what we have just learned in mind, let’s go back to our phone book example and take a 
quick look at its contents: 
 

$ cat phonebook 
Carlos Santana  086-45345099     
Caroline Smith  01-2342689 
Jimmy Page   051-23452334 
Joe Walsh   087-567645123 
Martina Blackmore  051-398475 
Robert Plant  045-3560994    
Robert Smith  045-4534534 

 
Up until now, we have simply searched our phone book for specific entries, i.e.: 
 $ grep 'Robert Plant' phonebook 
 Robert Plant  045-3560994   
  
Wouldn’t it be nice if we could develop some scripts that would allow us to update our phonebook 
(i.e. add and remove existing entries) without having to always manually edit the file?  
 



  Shell Programming II 

  Page 6 

In this final look at command line arguments we are going to develop three new scripts. The first 
script (called phonelu – short for phone look up) will be an argument-based version of the search 
utility we have already used on our phone book. The second script (called phoneadd) will allow us to 
add a new entry to our phone book and, finally, our third script (phonerm) will allow us to remove an 
existing entry from our phone book based on a specified user name. 
 
1. phonelu 

$ nano phonelu 
 grep  "$1" phonebook 

 (save, exit and make executable) 
 
Now let’s try it: 
$ ./phonelu Caroline 
Caroline Smith  01-2342689 
$ ./phonelu "Joe W" 
Joe Walsh   087-567645123 
 
Q. What’s the significance of having the $1 in double quotes? 
 

2. phoneadd 
$ nano phoneadd 
echo  "$1 $2"  >>  phonebook 
(save, exit and make executable) 
(the first & second arguments are separated by a tab space) 
 
Now lets try it: 
$ ./phoneadd 'Don Henley'  051-23487347  
$ ./phonelu Don 
Don Henley   051-23487347  
 
This program takes 2 command line arguments 
 

 $ cat phonebook 
 Carlos Santana  086-45345099     

Caroline Smith  01-2342689 
 Jimmy Page   051-23452334 

Joe Walsh   087-567645123 
 Martina Blackmore  051-398475 

Robert Plant  045-3560994    
 Robert Smith  045-4534534 

Don Henley    051-23487347  

 
In the above example Don Henley was quoted, so that the shell would pass it along to phoneadd as a 
single argument (what would have happened if we hadn’t done this?). After phoneadd finished, we 
executed phonelu, to see if we could find the new entry. We then called cat, to list the contents of the 
file. So everything worked fine!  
 
Well the file is no longer sorted (in alphabetical order), phoneadd only added the entry onto the end of 
the file. We can overcome this inconvenience by adding the following line to our script: (on a new line 
below the echo command) 
 

sort –o phonebook phonebook 
 
The –o option to sort specifies where the sorted output is to be written, and this can be the same as 
the input file. 
 
3. phonerm 

$ nano phonerm 
grep –v  "$1"   phonebook    >  /tmp/phonebook 
mv /tmp/phonebook phonebook 
(save, exit and make executable) 



  Shell Programming II 

  Page 7 

 
Now let’s try it: 
$ ./phonerm Robert 
$ cat phonebook 

 Carlos Santana  086-45345099     
Caroline Smith  01-2342689 

 Jimmy Page   051-23452334 
Joe Walsh   087-567645123 

 Martina Blackmore  051-398475 
Don Henley    051-23487347  

 
As an exercise, use the man pages to find out exactly what happens when we execute the phonerm 
script. 
 
 

Functions 
 
The shell allows you to define functions which can then be used as shell commands. Functions help to 
improve modularity and avoid repetition of tasks. 
 
General format: 
 
function function_name 
{ 
 commands 
}  
 
Example: 

 
$ nano printtext 
function highlight 
{ 
 echo “====== $* ======” 
} 
highlight Heading Text 
echo Normal Text 
highlight End of Text 

 
The output of this script is: 
 

$ ./printtext 
====== Heading Text ====== 
Normal Text 
====== End of Text ====== 

 
 

Exit and Return Codes 
 
A shell script terminates at the end of the instructions,  or if it reaches an exit command. The exit 
command can be used with an argument, and this argument can be interpreted by later programs. The 
default exit code is 0. The exit code from a previous command can be accessed as $? 
 
Example: 

$ nano yearsago 
# Returns the number of years ago a certain year was 
# 
if [ $1 -gt 2014 ] 
then 
        exit 1 
else 
        echo That was `expr 2014 - $1` years ago 
fi 



  Shell Programming II 

  Page 8 

 
 
 

Usage: 
$ ./yearsago 1969 
That was 45 years ago 
$ echo $? 
0 
$ ./yearsago 2020 
$ echo $? 
1 

 
At any time, you can check the exit code returned by a command including the standard commands;  

e.g. $ ls 
 hello.java   goodbye.java 

$ echo $? 
0 
$ ls xyz* 
ls: xyz*: No such file or directory 
$ echo $? 
1 
 

Functions within scripts may also return a value. 
 
 
Exercise: 
 
The yearsago script has the current year hard-coded. Modify the script so it will work next year or 
any year.   Hint: have a look at the man page for the date command. 
 


