Contents

The Octal Numbering System	1
Octal to Decimal:	2
Binary to Octal:	2
Number Bases Reference Table	3

The Octal Numbering System

Octal comes into a close second as a numbering system to use instead of binary.

The **Octal Numbering System** is very similar in principle to the previous hexadecimal numbering system except that in Octal conversions, a binary number is divided up into **groups of only 3 bits**, with each group or set of bits having a distinct value of between 000 (0) and 111

Decimal Number	3-bit Binary Number	Octal Number
0	000	0
1	001	1
	010	2
	011	3
	100	4
5	101	5
6	110	6
7	111	7
8	001 000	10 (1+0)
9	001 001	11 (1+1)

In octal, you can represent, at most, 3 bits with a single octal digit.

So it's easy to equate: $311_8 \approx 11\ 001\ 001_2$.

The problem with octal, as you can see, is that the 3rd octal digit can only goes as high as 3, so it does not represent a byte as cleanly as hex.

Octal is used in Unix for permissions due to its 3-bit nature.

If we take the three specific entitlements (read, write, execute) for a file, we find that it coincides very well with octal.

That's why we've used "chmod 744" commands, because they are octal representation of permissions

\$chmod	7	4	4
	111	100	100
	R-W-E	Read	Read
	User	group	others respectively

So if you wanted the permission for read-write, it would be 110, or 6. Read and execute would be 101 or 5.

EXERCISE: What is the chmod command if you want user to have read, write and execute, and the group and others to have write and execute only?

Consider any binary number. A binary number consists of only 0's and 1's

Group all the bits in the binary number, as a set of 3 bits. Start from the right: approaching from least significant bit to the most significant bit.

• If any bit remains ungrouped in a set of 3 bits then you can add a leading '0' to it on the left, to make it a perfect set.

EXERCISE: Why groups of 3 for Octal and groups of 4 for Hex?

Octal to Decimal:

Find the octal numbers and their equivalent binary numbers

Replace each 3-bit binary number set to its equivalent octal number

Decimal Number	3-bit Binary Number	Octal Number		
0	000	0		
1	001	1		
2	010	2		
3	011	3		
4	100	4		
5	101	5		
6	110	6		
7	111	7		
8	001 000	10 (1+0)		
9	001 001 11 (1+1)			
Continuing upwards in groups of three				

Octal Digit Value	2322 ₈		
In polynomial form	$=(2 \times 8^{3}) + (3 \times 8^{2}) + (2 \times 8^{1}) + (2 \times 8^{0})$		
Add the results = (1024) + (192) + (16) + (2)			
Decimal number form equals: 123410			

Binary to Octal:

- a) 100101111010₂
- b) 1111110011₂
- c) 101010101010₂
- d) 000011001111₂

(a) 100101111010₂					
		100	101	111	0102
		4 5	7	28	
		So, 10	010111	10102	= 45728
(b) 1111110011 ₂					
1	111	110	0112		
001	111	110	0112		
1	7	6	38		

EXERCISE: Complete for (c) and (d) calculations above

BASE 10	BASE 2	BASE 16	BASE 8
DECIMAL	BINARY	HEXADECIMAL	OCTAL
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

Number Bases Reference Table

