Raspberry Pi/ SenseHAT Introduction

Frank Walsh

What is a Raspberry Pi?

- Low cost, single board computer
- Same features as most laptops/workstations 40 pin GPIO

Raspberry Pi - Storage

History

- Launched in 2012
- Inspired by Acorn's BBC Micro from 1981
- Original concept to inspire/educate kids
- Used a lot in 3rd level/home

Getting Started -Conventional

- Raspberry Pi 3 B or higher
- Keyboard and mouse
- HDMI display monitor
- SD Card (8 GB+ recommended)
- SD Card Reader (usually a laptop)

Getting Started –Headless

- Raspberry Pi 3 B or higher
- Keyboard and mouse
- HDMI display monitor
- SD Card (8 GB+ recommended)
- SD Card Reader (usually a laptop)
- Accessible WiFi network

Raspberry Pi Model Comparison

Raspberry Pi Model Comparison

	Raspberry Pi 3 Model B	Raspberry Pi Zero	Raspberry Pi 2 Model B	Raspberry Pi Model B+
Introduction Date	2/29/2016	11/25/2015	2/2/2015	7/14/2014
SoC	BCM2837	BCM2835	BCM2836	BCM2835
CPU	Quad Cortex A53 @ 1.2GHz	ARM11 @ 1GHz	Quad Cortex A7 @ 900MHz	ARM11 @ 700MHz
Instruction set	ARMv8-A	ARMv6	ARMv7-A	ARMv6
GPU	400MHz VideoCore IV	250MHz VideoCore IV	250MHz VideoCore IV	250MHz VideoCore IV
RAM	1GB SDRAM	512 MB SDRAM	1GB SDRAM	512MB SDRAM
Storage	micro-SD	micro-SD	micro-SD	micro-SD
Ethernet	10/100	none	10/100	10/100
Wireless	802.11n / Bluetooth 4.0	none	none	none
Video Output	HDMI / Composite	HDMI / Composite	HDMI / Composite	HDMI / Composite
Audio Output	HDMI / Headphone	HDMI	HDMI / Headphone	HDMI / Headphone
GPIO	40	40	40	40
Price	\$35	\$5	\$35	\$35

- Processor and Memory (for pi 3 B+)
 - Broadcom 2836 System On Chip
 - 64 bit ARM RISC CPU core (not x86 compatible)
 - Videocore IV GPU
 - Default clock is 1200Mhz. Overclocking not permitted in Rpi-3
 - GPU is basically as powerful as what was on the original Xbox
- Mass Storage: micro SD card
 - Any SD card
 - Kernel boots from SD card
 - Easy to access root FS on other device

- Video
 - HDMI or (digital) DVI via cheap adaptor/cable
 - Wide range of resolutions
 - 640×350 to 1920×1200
- Audio
 - Via HDMI
 - Via 3.5mm stereo jack
 - Stereo analog
 - Output only

- Networking
 - 10/100Mbps via RJ45 on model B
 - Wireless Wifi
 - Bluetooth LE 4.2
- USB
 - Four USB sockets on RPi model B, single on model A
 - Expandable via regular or powered hubs
- Power
 - Primary power via microUSB plug
 - A 2.5A cell charger works well, but a 1A cell charger might be
 - Pi-1 requires only 0.8A current
 - PC USB port may not work Why?

- General Purpose I/O (GPIO)
 - 3.3 volt logic via 40 pin header
 - NOT 5 volt or short tolerant
 - Parallel I/O pins
 - UART (Linux console support)
 - I2C, SPI for peripherals
 - No Analog to Digital/D, so no analog input
 - Can do software-based PWM
 - Libraries exist for interacting with the GPIO through several programming languages
- More I/O
 - Display Serial Interface (DSI) LCD panel support
 - Camera Serial Interface (CSI) camera support

Warning - Don't fry your RPi

- RPis are fairly robust but...
- If using with keyboard/screen
 - Connect the USB keyboard and USB first
 - Connect the HMDI connector
 - Turn on the monitor
- Plug in the power cable
 - Do not plug in the SenseHat when the RPi is plugged in and booted into Raspian.
 - ALWAYS plug in the HAT before plugging in the power cable.

Warning - Don't fry your RPi

- If you're doing some "physical computing"
 - Input no more that 3.3V to a GPIO
 - Use GPIO.cleanup() to set the GPIO pins back to a safe state; input only
- Current load should be less than 16mA on any one GPIO pin
- Current load should be less than 100mA for all GPIO pins
- Do not connect a motor directly to the Pi's GPIO, the back EMF(Electromotive Force) will fry the Pi;
 - Use a transistor

SenseHAT

- HAT stands for Hardware Attached on Top.
- Several HATs available for RPi.
 - These are external boards you can purchase that plug right into the GPIOs.
- We're using SenseHAT
 - 8×8 RGB LED matrix
 - five-button joystick and includes the following sensors:
 - Gyroscope
 - Accelerometer
 - Magnetometer
 - Temperature
 - Barometric pressure
 - Humidity
- Also a <u>Python library</u> provides an easy programmatic interface to everything on the board.

Other things you can do with RPi – Physical Computing

- Can interface with many different devices/components
- Use the GPIO pins on your Raspberry Pi to interface with electronic components, such as LEDs and PIRs.
- Write programs that interact/control attached components

Setting Up Your Pi - Attaching the SenseHAT

 Follow the instructions here: <u>https://projects.raspberrypi.org/en/projects/getting-started-with-the-sense-hat/3</u>

Setting up your RPi – Installing an OS

- If you bought your RPi with a pre-installed SD card you're good to go.
- If you have a blank SD card, do this weeks lab!
- Supported OS
 - Raspbian (Debian optimized for Rpi)
 - Debian (non-optimized)
 - Arch Linux
 - RISC OS
 - NetBSD
 - Openelec an XBMC media center
 - Pidora Fedora remix

Programming the RPi

- By default, supporting Python as the educational language
- Any language which will compile for ARMv6 can be used with the Raspberry Pi
- For primary age SCRATCH game maker is bundled
- Raspbian also contains Java SE platform

Programming – SCRATCH

scratch is free from MIT

Programming – Python

Programming - OpenGL

- Raspberry Pi incorporates a powerful graphics accelerator OpenGL
 - Examples, including Quake 3 at
 - https://github.com/raspberrypi/quake3

Some Other Things

- Can run Kodi software
 - Turn your TV into a Smart TV!
- Emulators for tons of old platforms (C64, Atari, NES, etc.)
 - I have a mame emulator.
- Brew your own beer!
 - I've been doing this with the help of an RPi since 2014
- Has its own app store
 - http://store.raspberrypi.com/

Projects Using Raspberry Pi

- Raspberry Pi Cluster
 - https://arstechnica.com/information-technology/2012/09/university-buildscheap-supercomputer-with-raspberry-pi-and-legos/
 - http://www.youtube.com/watch?v=Jq5nrHz9I94

Python Primer

With help from

https://lobster1234.github.io/2017/05/25/python-java-primer/

What's Python

- Created 1991
- Used for Web Dev, Software Dev, Maths, Embedded Devices (micro python), Scripting
- Why Python
 - Works on many platforms
 - Easy to learn(simple syntax)
- One thing to always remember about Python: Relies on indentation(using white space) to define scope for if statements, loops, functions. Java uses curly-brackets for this.

Python is interpreted

• Many languages require compilation of program to a form the machine understands

• Python is interpreted directly to machine instructions

Variables

Read Input

name = input("Enter name\n")
age = int(input("Enter age\n"))
print("Name is ", name ," and age is ", age)

Operators

i = 5; j = 3; print("Sum : ", i+j) print("Diff : ", i-j) print("Product : ", i*j) print("Modulo : ", i%j) print("Floor Division : ", i//j) print("Float Division : ", i/j)

Sum : 8 Diff : 2 Product : 15 Modulo : 2 Floor Division : 1 Float Division : 1.66666666666666666

If-then-else

n=4

if n%2 == 1 :
 print("Weird")
elif n%2==0 and n >=2 and n <=5 :
 print("Not Weird")
elif n%2==0 and n >=6 and n <=20 :
 print("Weird")
elif n%2==0 and n > 20 :
 print("Not Weird")

For loop

for n in range(5) :
 print(n)

for c in "Computer-Systems" :
 print(c)

While loop

n = 0		
while True :		
n = n + 1		
print(n)		
if n==20 :		
break		
print("Loop broke \	with n = ",n)	

Functions

def add(x, y):

return x+y # If return is skipped, the method returns a None

print(add(1,2))

Can be called with named arguments

print(add(x=5,y=7)) # Will print 12

```
# Can take default arguments too
def add(x, y=2):
    return x+y
```

print(add(5)) # Will return 7

Lists

```
list = [] # create a new list
list.append("A") # add to the end
list.append("B")
list.append("C")
list.insert(3,"D") # insert at an index
sorted list = sorted(list) # returns a new, sorted list
list.sort() # in place sort
list.remove("C") # remove first occurrence of "C"
popped = list.pop(2) # return and remove the item at index 2
list.reverse() # reverse the list
a = list.index("A") # return index of "A"
list += ["E", "F"] # add a list with E and F to the end of this list
size = len(list) # size of the list
print(size)
print(list)
```

4 ['B', 'A', 'E', 'F']