
TCP/UDP



Recap: Layered Model Network Comms

Web Server

Application

Transport

Network

Data Link/ 
Physical

Layers

Benefits of Layered Model:
• assists in protocol design
• fosters competition
• changes in one layer do not 

affect other layers
• provides a common 

language



Ethernet

• Data Link Layer protocol

• Ethernet (IEEE 802.3) is widely used.

• Supported by a variety of physical layer 
implementations.

• Multi-access (shared medium).

TCP/IP 3



CSMA/CD

❑ Carrier Sense Multiple Access with Collision 
Detection 

❑ Carrier Sense : can tell when another host is 
transmitting

❑Multiple Access : many hosts on 1 wire

❑ Collision Detection : can tell when another host 
transmits at the same time.



WiFi

• Data Link Layer protocol

• IEEE 802.11

• Supported by a variety of physical layer 
implementations.

• Multi-access (shared medium).



CSMA/CA

❑ Carrier Sense Multiple Access with Collision 
Avoidance 

❑ Carrier Sense : can tell when another host is 
transmitting

❑Multiple Access : many hosts on 1 wire

❑ Collision Avoidance : can tell if it’s “safe” to 
transmit.

6



Physical Addressing

❑ Every interface has a unique 48 bit address (a.k.a. 
hardware address). 
❖ Example:   C0:B3:44:17:21:17

❖ The broadcast address is all 1’s(Fs).

❖ Addresses are assigned to vendors by a central authority.

❑ Each interface looks at every frame and inspects the 
destination address. If the address does not match the 
hardware address of the interface (or the broadcast 
address), the frame is discarded.



Internet Protocol

• IP is the network layer

• packet delivery service (host-to-host).

• translation between different data-link protocols

• IP provides connectionless, unreliable delivery of IP 
datagrams.

• Connectionless: each datagram is independent of all 
others.

• Unreliable: there is no guarantee that datagrams are 
delivered correctly or even delivered at all.



IP Addresses

• IP addresses are not the same as the underlying 
data-link (MAC) addresses.

• IP is a network layer - it must be capable of providing 
communication between hosts on different kinds of 
networks (different data-link implementations).

• The address must include information about what 
network the receiving host is on.        This is what 
makes routing feasible.



Network and Host IDs

• A Network ID is assigned to an 
organization by a global authority.

• Host IDs are assigned locally by a system 
administrator.

• Both the Network ID and the Host ID are 
used for routing.



Host and Network Addresses

• A single network interface is assigned a single IP 
address called the host address. 

• A host may have multiple interfaces, and therefore 
multiple host addresses.

• Hosts that share a network all have the same IP 
network address (the network ID).

• An IP address that has a  host ID of all 0s is called a 
network address and refers to an entire network.



Transport Layer & TCP/IP

• IP is the network layer, so TCP must be the 
transport layer?

TCP is only part of the TCP/IP transport layer -
the other part is UDP (User Datagram Protocol).



The Internet Hourglass

ICMP(ping), ARP & 
RARP

802.3
TCP/IP 13

WiFi



Transport Layer Role

• Prepares application data for 
transport over a network

• Processes network data for use 
by apps



Transport Layer Purpose

• Segments data and reassebles segements into various communication 
streams as follows:
• Tracks individual communication between apps on source and destination hosts

• A host can have multiple simultanious networked apps (e.g. browser, Skype etc.

• Segements data and manages each piece
• The Transport layer segments data from the Application layer
• Each piece of application data requires headers to indicate to which communication it is 

associated with

• Reassembles segments into application data
• At a receiving host, individual pieces of data must also be reconstructed into a complete 

data stream that is useful to the Application layer.

• Identifies different applications
• Transport layer must be able to identify target apps: Uses Port Numbers



Choosing Transport Layer Protocols

• Application developers choose based on the nature of the app

• IP Telephony
• Video Streaming
• Frequent Sensor data

Requirements:
• Fast
• Low overhead
• No need for acknowedgements
• No need to resend lost data
• Delivers data as it arrives.

• SMPT/POP (email)
• HTTP (web page)
• Command data

Requirements:
• Reliable
• Acknowedge data
• Resend lost data
• Delivers data in order sent.



UDP - User Datagram Protocol

• UDP is a transport protocol

• communication between processes

• UDP uses IP to deliver datagrams to the right host.

• UDP uses ports to provide communication services to 
individual apps/processes.



Ports
• TCP/IP uses an abstract destination 

point called a protocol port.

• Ports are identified by a positive 
integer.

• Port number & IP address allow any 
process/application in any computer 
on Internet to be uniquely identified

• Operating systems provide 
a mechanism that apps & processes 
use to specify a port.

Host 
BProcess

Process

Process

Host 
AProcess

Process

Process



Ports & UDP

• Source/destination port: port numbers identify sending & receiving 
processes

• Ports can be static or dynamic
• Static (< 1024) assigned centrally, known as well known ports

• Dynamic (can be used by any computer application program to communicate 
with any other application program, 49152-65535 for Windows)

• Message length in bytes includes the UDP header and data



UDP

• Datagram Delivery

• Connectionless

• Unreliable

• Minimal

Source Port Destination Port

Length Checksum

Data

UDP Datagram 
Format



TCP
Transmission Control Protocol

• TCP is an alternative transport layer protocol 
supported by TCP/IP.

• TCP provides:

• Connection-oriented

• Reliable

• Full-duplex

• Byte-Stream



Connection-Oriented

• Connection oriented means that a virtual 
connection is established before any user data is 
transferred.

• If the connection cannot be established, the user 
program is notified (finds out). 

• If the connection is ever interrupted,     the user 
program(s) is finds out there is a problem.



Reliable

• Reliable means that every transmission of data is 
acknowledged by the receiver.

• Reliable does not mean that things don't go wrong, 
it means that we find out when things go wrong.

• If the sender does not receive acknowledgement 
within a specified amount of time, the sender 
retransmits the data.



Byte Stream

• Stream means that the connection is treated as a 
stream of bytes. 

• The user application does not need to package data 
in individual datagrams (as with UDP).



Buffering

❑ TCP is responsible for buffering data and determining 
when it is time to send a datagram. 

❑ It is possible for an application to tell TCP to send the 
data it has buffered without waiting for a buffer to fill 
up.



Full Duplex

• TCP provides transfer in both directions  (over a 
single virtual connection).

• To the application program these appear as 2 
unrelated data streams, although TCP can piggyback 
control and data communication by providing 
control information (such as an ACK) along with user 
data.



TCP Ports

• Interprocess communication via TCP is achieved with 
the use of ports (just like UDP). 

• UDP ports have no relation to TCP ports (different 
name spaces).



TCP Segments

• The chunk of data that TCP asks IP to deliver is called 
a TCP segment.

• Each segment contains:

• data bytes from the byte stream

• control information that identifies the data bytes 



TCP Segment Format 

Destination Port

Options (if any)

Data

1 byte 1 byte

Source Port

Sequence Number

Request Number

1 byte 1 byte

offset Reser. Control Window

Checksum Urgent Pointer



Addressing in TCP/IP

• Each TCP/IP address includes:

• Internet Address

• Protocol (UDP or TCP)

• Port Number

Remember: TCP/IP is a protocol suite that includes IP, TCP and UDP



TCP vs. UDP

Q: Which protocol is better ?

A: It depends on the application.

TCP provides a connection-oriented, reliable, 
byte stream service (lots of overhead).

UDP offers minimal datagram delivery service (as 
little overhead as possible).



TCP Process

• When a client requests a connection, it sends a “SYN” 
segment (a special TCP segment) to the server port.

• SYN stands for synchronize. The SYN message 
includes the client’s ISN.

• ISN is Initial Sequence Number.



TCP Process 2

• Every TCP segment includes a Sequence Number
that refers to the first byte of data included in 
the segment.

• Every TCP segment includes a Request Number
(Acknowledgement Number) that indicates the 
byte number of the next data that is expected to 
be received.

• All bytes up through this number have already been 
received.



TCP Process 3

• There are a bunch of control flags:

• URG: urgent data included.

• ACK: this segment is (among other things) an 
acknowledgement.

• RST: error - abort the session.

• SYN: synchronize Sequence Numbers (setup)

• FIN: polite connection termination.



TCP Process 4

• MSS: Maximum segment size (A TCP option)

• Window: Every ACK includes a Window field that 
tells the sender how many bytes it can send before 
the receiver will have to toss it away (due to fixed 
buffer size).



TCP Connection Creation

• Programming details later - for now we are 
concerned with the actual communication.

• A server accepts a connection.

• Must be looking for new connections!

• A client requests a connection.

• Must know where the server is!



Client Starts

• A client starts by sending a SYN segment with the 
following information:

• Client’s ISN (generated pseudo-randomly)

• Maximum Receive Window for client.

• Optionally (but usually) MSS (largest datagram accepted).

• No payload! (Only TCP headers)



Sever Response

• When a waiting server sees a new connection 
request, the server sends back a SYN segment 
with:

• Server’s ISN (generated pseudo-randomly)

• Request Number is Client ISN+1

• Maximum Receive Window for server.

• Optionally (but usually) MSS

• No payload! (Only TCP headers)



Finally

• When the Server’s SYN is received, the client 
sends back an ACK with:

• Request Number is Server’s ISN+1



Client Server

SYN

ISN=X
1

SYN

ISN=Y ACK=X+1

2

ACK=Y+1
3

tim
e 



TCP Data and ACK

• Once the connection is established, data can be sent. 

• Each data segment includes a sequence number 
identifying the first byte in the segment.

• Each segment (data or empty) includes a request 
number indicating what data has been received.



TCP Buffers

• The TCP layer doesn’t know when the application 
will ask for any received data.

• TCP buffers incoming data so it’s ready when we ask for it.

• Both the client and server allocate buffers to hold 
incoming and outgoing data

• The TCP layer does this.

• Both the client and server announce with every ACK 
how much buffer space remains (the Window field 
in a TCP segment).



Send Buffers

• The application gives the TCP layer some data 
to send.

• The data is put in a send buffer, where it 
stays until the data is ACK’d.
• it has to stay, as it might need to be sent again!

• The TCP layer won’t accept data from the 
application unless (or until) there is buffer 
space.



ACKs

• A receiver doesn’t have to ACK every segment 
(it can ACK many segments with a single ACK 
segment).

• Each ACK can also contain outgoing data 
(piggybacking).

• If a sender doesn’t get an ACK after some 
time limit (MSL) it resends the data.



TCP Segment Order

• Most TCP implementations will accept out-of-
order segments (if there is room in the 
buffer).

• Once the missing segments arrive, a single 
ACK can be sent for the whole thing.

• Remember: IP delivers TCP segments, and IP 
in not reliable - IP datagrams can be lost or 
arrive out of order.



Termination

• The TCP layer can send a RST segment that 
terminates a connection if something is wrong.

• Usually the application tells TCP to terminate the 
connection politely with a FIN segment.



FIN

• Either end of the connection can initiate 
termination.

• A FIN is sent, which means the application is done 
sending data.

• The FIN is ACK’d.

• The other end must now send a FIN.

• That FIN must be ACK’d.



App1 App2

FIN

SN=X
1

ACK=X+1
2

ACK=Y+1
4

FIN

SN=Y

3

..
.



TCP Termination

1

2

3

4

App1: “I have no more data for you”.

App2: “OK, I understand you are done sending.”

dramatic pause…

App2: “OK - Now I’m also done sending data”.

App1: “Roger, Over and Out, Goodbye, Astalavista 

Baby, Adios, It’s been real ...”

camera fades to black ...



TCP TIME_WAIT

• Once a TCP connection has been terminated (the 
last ACK sent) there is some unfinished business:

• What if the ACK is lost? The last FIN will be resent and it 
must be ACK’d.

• What if there are lost or duplicated segments that finally 
reach the destination after a long delay?

• TCP hangs out for a while to handle these situations.



QI
• Why is a 3-way handshake necessary?

• HINTS: TCP is a reliable service, IP delivers each TCP 
segment, IP is not reliable.

• Who sends the first FIN - the server or the client?

• Once the connection is established, what is the 
difference between the operation of the server’s 
TCP layer and the client’s TCP layer?


