
Iteration in Programming

Produced

by:

Department of Computing and Mathematics
http://www.wit.ie/

for loops

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Topics list

• There are three types of loop in programming:
– While loops:

• Counter controlled (n times) - covered in previous talk
• Sentinel based (covered later in the course)
• Flag based (covered later in the course)

– For loops (this slide deck)

– Do While loops (covered later in the course)

• Comparative use of while and for loops
– Lab02a - Challenge 1
– Lab02a - Challenge 3

For loop pseudo-code

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

General form of a for loop

Recap: Processing Example 2.13

This was a slide from
the previous talk. We
used a while loop to
repeatedly print the

four rectangles to the
display window.

Processing Example 2.15

This code does
the same as the
previous slide,
except that we
use a different

loop: for

For loop syntax

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

For loop syntax

initialization int i = 0; Initialise a loop control variable (LCV) e.g. i.
It can include a variable declaration.

boolean
condition

i < 4; Is a valid boolean condition that typically tests
the loop control variable (LCV).

post-body
action

i++ A change to the loop control variable (LCV).
Contains an assignment statement.

for Loop Flowchart

statement(s)
trueboolean

condition?

false

update

Returning to: Processing Example 2.15

Q: Do we need the
yCoordinate
variable?

Can you think of a
different approach
using a for loop?

Processing Example 2.16

A: We can eliminate
the yCoordinate
variable by setting
the i variable to 60
and incrementing it
by 20.

For loop: all parts are optional

for (; ;)

{

// statements here

}

This is an infinite loop…

For loops can be
nested

for (int i=0; i < 4; i++)
for (int j=0; j < 4; j++)

println("The value of i is: " + i + " and j is: " + j);

The value of i is: 0 and j is: 0

The value of i is: 0 and j is: 1

The value of i is: 0 and j is: 2

The value of i is: 0 and j is: 3

The value of i is: 1 and j is: 0

The value of i is: 1 and j is: 1

The value of i is: 1 and j is: 2

The value of i is: 1 and j is: 3

The value of i is: 2 and j is: 0

The value of i is: 2 and j is: 1

The value of i is: 2 and j is: 2

The value of i is: 2 and j is: 3

The value of i is: 3 and j is: 0

The value of i is: 3 and j is: 1

The value of i is: 3 and j is: 2

The value of i is: 3 and j is: 3

Topics list

• There are three types of loop in programming:
– While loops:

• Counter controlled (n times) - covered in previous talk
• Sentinel based (covered later in the course)
• Flag based (covered later in the course)

– For loops (this slide deck)

– Do While loops (covered later in the course)

• Comparative use of while and for loops
– Lab02a - Challenge 1
– Lab02a - Challenge 3

for versus while

for(int i = 0; i < 4; i++)
{

rect(50, yCoordinate, 500, 10);
yCoordinate += 20;

}

Processing Example 2.15(for loop)

int i = 0;
while(i < 4)
{

rect(50, yCoordinate, 500, 10);
yCoordinate += 20;
i++;

}

Processing Example 2.13 (while loop)

Variable i is the Loop
Control Variable (LCV).
It must be initialised, tested
and changed.

int i = 0 is the initialisation.

i < 4 is the boolean
condition i.e. the test

i++ is the post-body action
i.e. the change.

Topics list

• There are three types of loop in programming:
– While loops:

• Counter controlled (n times) - covered in previous talk
• Sentinel based (covered later in the course)
• Flag based (covered later in the course)

– For loops (this slide deck)

– Do While loops (covered later in the course)

• Comparative use of while and for loops
– Lab02a - Challenge 1
– Lab02a - Challenge 3

Lab02a - Challenge 1 – bouncing ball

Draw a continuously bouncing ball. (vertical only)
• the xCoordinate remains the same value

the yCoordinate will change.

Assumptions:
• display window is 500 x 400
• ball is 100 in diameter.
• static xCoordinate is 250.
• background is called in the draw() method.
• starting yCoordinate is 300.

Lab02a - Challenge 1

Assumptions:
• display window is 500 x 400
• ball is 100 in diameter.
• static xCoordinate is 250.
• background is called in the draw() method.
• starting yCoordinate is 300.

float yCoordinate = 300;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);

}

Lab02a - Challenge 1
float yCoordinate = 300;
boolean bounceUp = false;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);

if (bounceUp)
// code to bounce the ball up

if (!bounceUp)
// code when ball is falling

}

• We need to track whether the ball is bouncing up or falling.
• To do this, we will use a boolean variable bounceUp.

It will be:
• true if the ball is bouncing up
• false if the ball is falling and

float yCoordinate = 300;
boolean bounceUp = false;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);

//ball is bouncing up
if (bounceUp){
if (yCoordinate > 100)

yCoordinate = yCoordinate - 1;
else

bounceUp = false;
}

//ball is falling down
if (!bounceUp){
if (yCoordinate <= 350)

yCoordinate = yCoordinate + 1;
else

bounceUp = true;
}

}

Topics list

• There are three types of loop in programming:
– While loops:

• Counter controlled (n times) - covered in previous talk
• Sentinel based (covered later in the course)
• Flag based (covered later in the course)

– For loops (this slide deck)

– Do While loops (covered later in the course)

• Comparative use of while and for loops
– Lab02a - Challenge 1
– Lab02a - Challenge 3

Lab02a - Challenge 3 – Moving Line

• In a new sketch, draw a vertical line that is the
height of your display window.

• It starts in the left most position of your display
window and moves right, pixel by pixel,
until it reaches the right hand side of your display
window.

Lab02a - Challenge 3 – Moving Line

• Upon reaching the right hand side, the vertical line
should reverse direction and return, pixel by pixel,
to the left hand side of the display window.

• As your vertical line is continually traversing the
display window, your grayscale background should
be varying very slightly in colour.

Lab02a - Challenge 3 – Moving Line

Assumptions:
• Window size 300x400.
• Background is initially set to 120.
• Stroke weight is 4

float background = 120;

void setup()
{

size(300,400);
background(background);
strokeWeight(4);

}

Lab02a - Challenge 3 – Moving Line

• Draw a vertical line that is the
height of your display
window.

• Call background to clear the
previously drawn line.

void draw()
{

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

float background = 120;
float xCoordinate = 0.0;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

Lab02a - Challenge 3 – Moving Line

This vertical line should start in the left most position of your
display window and move right, pixel by pixel, until it reaches
the right hand side of your display window.

void draw(){
xCoordinate = xCoordinate + 1;
background(background);
line (xCoordinate, 0, xCoordinate, height);

}

Lab02a - Challenge 3 – Moving Line

As your vertical line is continually traversing the display
window, your grayscale background should be varying
very slightly in colour.

void draw(){
xCoordinate = xCoordinate + 1;
background = background + 0.5;
background(background);
line (xCoordinate, 0, xCoordinate, height);

}

Lab02a - Challenge 3 – Moving Line

• Upon reaching the right hand side, the vertical line should
reverse direction and return, pixel by pixel, to the left hand
side of the display window.

• We need to keep track of the direction that the line should be
moving
i.e. is it going left-to-right, or has it reversed direction and
gone from right-to-left?

• We will use a boolean variable to do this:
• boolean reverseDirection will be initially set to false.

indicating a left-to-right direction.
• false indicates a left-to-right direction
• true indicates a right-to-left direction.

Lab02a –
Challenge 3

void draw()
{
if (!reverseDirection){

background = background + 0.5;
xCoordinate = xCoordinate + 1;

}
else{
background = background - 0.5;
xCoordinate = xCoordinate - 1;

}

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

float background = 120;
float xCoordinate = 0.0;
boolean reverseDirection = false;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

Lab02a - Challenge 3 – Moving Line

• But, we have no code written that will set the flag to
true e.g.

boolean reverseDirection = true;

• Under what circumstances should the flag be set to
true?

• And when should it be set back to false?

void draw(){
if (xCoordinate == width)

reverseDirection = true;
if (xCoordinate == 0)

reverseDirection = false;

if (!reverseDirection){
background = background + 0.5;
xCoordinate = xCoordinate + 1;

}
else{
background = background - 0.5;
xCoordinate = xCoordinate - 1;

}

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

float background = 120;
float xCoordinate = 0.0;
boolean reverseDirection = false;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

Questions?

