
Primitive	Arrays

Produced	
by:

Department	of	Computing	and	Mathematics
http://www.wit.ie/

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor

Topics	list

• Why	arrays?

• Primitive	Arrays

• Array	Syntax	

Why	arrays?	

• We	look	at	different	pieces	of	code	to	explain	
the	concept.

• In	each	piece	of	code,	we:
– read	in	10	numbers	from	the	keyboard
– add	the	numbers
– print	the	sum	of	all	the	numbers.	

Source:		Reas &	Fry	(2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding	10	numbers	

Source:		Reas &	Fry	(2014)

Reads	in	10	numbers	
from	the	keyboard

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding	10	numbers	

Source:		Reas &	Fry	(2014)

As	each	number	is	entered,	
it	is	added	to	the	value	
currently	stored	in	sum.

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding	10	numbers	

Source:		Reas &	Fry	(2014)

When	the	10	numbers	
have	been	read	in,	

the	sum of	the	10	numbers	
is	printed	to	the	console.

Adding	10	numbers	

Source:		Reas &	Fry	(2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Notice	that,	
each	time	a	number	is	read	in,	

it	overwrites	the	value	stored	in	n.

It	doesn’t	remember	
the	individual	numbers	typed	in.

Rule – Never	lose	input	data	

• Always	try	to	store input	data	for	later	use	

• In	real-life	systems,	
you	nearly	always	need	to	use	it	again.	

• The	previous	code	has	NOT	done	this.
– Let’s	try	another	way	...	

Remembering	the	Numbers

int n0,n1,	n2,	n3,	n4,	n5,	n6,	n7,	n8,	n9;
int sum	=	0;

n0	=	Integer.parseInt (JOptionPane.showInputDialog("Please	enter	a	number	",	"3"));
sum	+=	n0;

n1	=	Integer.parseInt (JOptionPane.showInputDialog("Please	enter	a	number	",	"3"));
sum	+=	n1;

//rest	of	code	for	n2	to	n8

n9=	Integer.parseInt(JOptionPane.showInputDialog("Please	enter	a	number	",	"3"));
sum	+=	n9;

println("The	sum	of	the	values	you	typed	in	is	:	"	+	sum);

This	works	in	the	sense	that	we	
have	retained	the	input	data.
BUT…we	no	longer	use	loops.

Imagine	the	code	if	we	had	to	
read	in	1,000	numbers?

We	need	a	new	approach…

This	is	where	data	structures
come	in!	

We	will	now	look	at	arrays.

Arrays (fixed-size	collections)

• Arrays	are	a	way	to	collect	associated	values.	

• Programming	languages	usually	offer	a	special	
fixed-size	collection	type:	an	array.

• Java	arrays	can	store	
– objects	
– primitive-type	values.

• Arrays	use	a	special	syntax.

Primitive	types

17

Primitive type

int num = 17;

Directly stored
in memory…

• We	are	now	going	to	look	
at	a	structure that	can	
store	many	values	of	the	
same	type.

• Imagine	a	structure	made	
up	of	sub-divisions	or	
sections…

• Such	a	structure	is	called	
an	array and	would	look	
like:

Structure	of	a	primitive	array

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Structure	of	a	primitive	array

int[]		numbers; numbers

null

Structure	of	a	primitive	array

int[]		numbers; numbers

0 0
1 0
2 0
3 0

numbers	=	new	int[4];

Structure	of	a	primitive	array

int[]		numbers; numbers

0 0
1 0
2 0
3 0

numbers	=	new	int[4];

We	have	declared	an	array	of	
int,	with	a	capacity	of	four.	

Each	element	is	of	type	int.

The	array	is	called	numbers.

Structure	of	a	primitive	array

int[]		numbers; numbers

0 0
1 0
2 0
3 0

Index	of	each	
element	in	the	array

numbers	=	new	int[4];

Structure	of	a	primitive	array

int[]		numbers; numbers

0 0
1 0
2 0
3 0

Default	value	for	each	
element	of	type	int.

numbers	=	new	int[4];

Structure	of	a	primitive	array

int[]		numbers; numbers

0 0
1 0
2 18
3 0

numbers[2]	=	18;

numbers	=	new	int[4];

We	are	directly	
accessing	the	

element	at	index	2
and	setting	it	to	a	

value	of	18.

Structure	of	a	primitive	array

int[]		numbers; numbers

0 12
1 0
2 18
3 0

numbers[0]	=	12;

numbers	=	new	int[4];

numbers[2]	=	18;

We	are	setting	the	
element	at	index	0
and	to	a	value	of	12.

Structure	of	a	primitive	array

int[]		numbers; numbers

0 12
1 0
2 18
3 0

numbers[0]	=	12;

numbers	=	new	int[4];

numbers[2]	=	18;

Here	we	are	printing	the	contents	of	
index	location	2	

i.e.	18	will	be	printed	to	the	console.

print(numbers[2]);

Declaring	a	primitive	array

int[]		numbers;

//somecode

numbers	=	new	int[4];

numbers

0 0
1 0
2 0
3 0

This	is	how	we	
previously	
declared	our	

array	of	four int,	
called	numbers.

Declaring	a	primitive	array

int[]		numbers;

//somecode

numbers	=	new	int[4];

numbers

0 0
1 0
2 0
3 0

We	can	also	
declare	it	like	

this…

int[]		numbers	=	new	int[4];

Returning	to	our	method	
that	reads	in,	and	sums,	10	numbers	

(typed	in	from	the	keyboard)…

and	converting	it	to	use	primitive	arrays…

Version	that	doesn’t	save	the	numbers

Source:		Reas &	Fry	(2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Notice	that,	
each	time	a	number	is	read	in,	

it	overwrites	the	value	stored	in	n.

It	doesn’t	remember	
the	individual	numbers	typed	in.

import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Using	arrays	to	remember	numbers

Source:		Reas &	Fry	(2014)

Using	an	array	
to	store	each	value	
that	was	entered.

Using	arrays	to	remember	numbers
import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);
Source:		Reas &	Fry	(2014)

Q:	Can	we	reduce	the	code	
to	only	have	one	loop?

Could	we	move	the	“sum”	
code	into	the	first	loop?Loop	1

Loop	2

Using	arrays	to	remember	numbers

import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data and sum the values
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Source:		Reas &	Fry	(2014)

A:	Yes.		

Move	the	“sum”	code	into	the	
first	loop.

->	functionality	doesn’t	change
Loop	1

What	if	we	wanted	the	user	
to	decide	how	many	numbers	

they	wanted	to	sum?

Source:		Reas &	Fry	(2014)

import javax.swing.*;

int sum = 0;

//Using the numData value to set the size of the array
int numbers[];
int numData = Integer.parseInt (JOptionPane.showInputDialog(

"How many values do you wish to sum? ", "3"));
numbers = new int [numData];

//read in the data and sum the values
for (int i = 0; i < numData ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

1. Delcare numbers to	be	an	array	of	type	
integer.	

2. numData takes	in	the	size.
3. Use	numData to	initialize	the	array	with	

new	specifying	the	size.

What	type	of	data	
can	be	stored	

in	a	primitive	array?

An	array	can	store	ANY	TYPE	of	data.

String	words	=	new	String[30];

Spot	spots[]	=	new	Spot[20];

int numbers[]	=	new	int[10];

byte	smallNumbers[]	=	new	byte[4];

char	characters[]	=	new	char[26];

Primitive Types

Object Types

Do	we	have	to	use	
all the	elements	in	the	array?

Do	we	have	to	use	all	elements	in	the	array?

• No.		

• But…this	might	cause	logic	errors,	
if	we	don’t	take	this	into	consideration	
in	our	coding.

• Consider	this	scenario…

Scenario	– exam	results	and	average	grade

• We	have	a	class	of	15	
students.

• They	have	a	test	
coming	up.

• We	want	to	store	the	
results	in	an	array	and	
then	find	the	average	
result.

We	create	an	array	of	int
with	a	capacity	of	15

results

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

Only	12	students	sat	the	exam.	
Their	results	were	recorded	in	
the	first	12	elements

To	calculate	the	average	result,	
divide	by	the	number	of	
populated	elements	
NOT the	array	capacity.

Average	grade

Do	we	have	to	use	all	elements	in	the	array?

• If	all	elements	in	an	array	are	NOT	populated,	
we	need	to:
– have	another	variable	(e.g.	int size)	

• containing	the	number	of	elements	in	the	array	actually	used.	
– ensure	size	is	used	when	processing	the	array	

• e.g.
for	(int i=	0;	i <	size;	i++)

• For	now	though,	
we	assume	that	all	elements	of	the	array	
are	populated	and	therefore	ready	to	be	
processed.

Summary	- Arrays

• Arrays	are	structures	that	can	store	many	
values	of	the	same	type

• Rule	– Never	lose	input	data
– Arrays	enable	us	to	store	the	data	efficiently	
– We	can	use	loops	with	arrays

• Arrays	can	store	ANY	type
• Declaring	arrays

int[]		arryName;
//somecode
arryName=	new	int[4];

int[]		arryName=	new	int[4];

OR

Questions?

