
Grouping	Objects	(lecture	1	of	2)

Produced	by:

(based	on	Ch.	4,	Objects	First	with	Java	- A	Practical	Introduction	using	BlueJ,	©	David	J.	Barnes,	Michael	Kölling)

Department	of	Computing	and	Mathematics
http://www.wit.ie/

ArrayList and	Iteration

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor
Dr. Frank	Walsh



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



The	requirement	to	group	objects

• Many	applications	involve	collections of	objects:
– Personal	organizers.
– Library	catalogs.
– Student-record	system.

• The	number	of	items	to	be	stored	varies:
– Items	added.
– Items	deleted.



Example:	A	personal	notebook

• Notes	may	be	stored.

• Individual	notes	can	
be	viewed.

• There	is	no	limit	to	
the	number	of	notes.

• It	generally	tells	you	
how	many notes	are	
stored.



Java	API:	the	class	library

• Many	useful	classes.
• We	don’t	have	to	write	everything	from	scratch.
• Java	calls	its	libraries,	packages.

Back	to	the	notebook:
• Grouping	objects	is	a	recurring	requirement.
– The	java.util package	
contains	classes	for	doing	this
…the	Collections Framework.



Java’s	Collections	Framework



ArrayList Collection

• We	specify:

– the	type	of	collection
• e.g.:	ArrayList

– the	type	of	objects	it	will	contain	
• e.g.:	<String>

• We	say	
– “ArrayList of	String”



import	java.util.ArrayList;

public	class	Notebook
{

//	Storage	for	an	arbitrary	number	of	notes.
private	ArrayList <String>	notes;

//	Perform	any	initialization	required	for	the	notebook.
public	Notebook()
{

notes	=	new	ArrayList <String>();
}

}

“notes	is	a	private	
ArrayList of	<String>”



Object	structures	with	ArrayList



Adding	a	third	note



Features of	the	ArrayList Collection

• It	increases	its	capacity	as	necessary.
• It	keeps	a	private	count	
– size() accessor.

• It	keeps	the	objects	in	order.

Details	of	how	all	this	is	done	are	hidden.
– Does	that	matter?	
– Does	not	knowing	how,	prevent	us	from	using	it?

?



import	java.util.ArrayList;

public	class	Notebook
{
private	ArrayList <String> notes;				

public	Notebook(){
notes	=	new	ArrayList <String>	();

}

public	void	storeNote(String	note){
notes.add(note);

}

public	int numberOfNotes(){
return	notes.size();

}
}

Adding a new note 
of type String

Returning the 
number of notes



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



ArrayList:	Index	numbering



Retrieving	an	object	– showNote()

Index 
validity 
checks

public	void	showNote (int	noteNumber)
{
if(noteNumber	<	0)	{
//	This	is	not	a	valid	note	number.

}
else	if(noteNumber	<	numberOfNotes())	{
System.out.println(notes.get(noteNumber));

}
else	{
//	This	is	not	a	valid	note	number.

}
}

Retrieve and
print the note



Removing	an	object
public	void	removeNote(int	noteNumber)
{
if(noteNumber	<	0)	{
//	This	is	not	a	valid	note	number,	so	do	nothing.

}
else	if(noteNumber	<	numberOfNotes())	{
//	This	is	a	valid	note	number.
notes.remove(noteNumber);

}
else	{
//	This	is	not	a	valid	note	number,	so	do	nothing.

}
}

Index 
validity 
checks

Delete the note at
the specific index



Removalmay	affect	numbering
This String 

had an index of 2.

Now it has an 
index of 1,

after the String 
before it

was removed



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



Generic	Classes

Collections are	known	as	
parameterized or	
generic types.



Generic	Classes

String is	not	parameterized.



Generic	Classes

The	type	parameter	<E>	
says	what	we	want	a	list	of:

ArrayList<Person>
ArrayList<TicketMachine>
etc.

ArrayList is	parameterized.



Generic	classes

• ArrayList implements	list	functionality:



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



Processing	a	whole	collection	(iteration)

• We	often	want	to	perform	some	actions	
an	arbitrary number	of	times.
– E.g.,	
Print	all	the	notes	in	the	notebook.	
How	many	are	there?		
Does	the	amount	of	notes	in	our	notebook	vary?

• Most	programming	languages	include	loop	statements
to	make	this	possible.

• Loops enable	us	to	control	how	many	times	we	repeat	
certain	actions.



Loops in	Programming
• There	are	three	types	of	standard	loops	in	(Java)	

programming:
– while
– for
– do	while

• You	typically	use	for	and	while	loops	to	iterate	over	your	
ArrayList collection,	

OR

• you	can	use	another	special	construct	associated	with	
Collections:
– for	each



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



Recap:	for	loop	pseudo-code

for(initialization;	boolean condition;	post-body	action)	
{

statements	to	be	repeated
}

General form of a for loop



Recap:	for	loop	syntax

for(initialization;	boolean condition;	post-body	action)	
{

statements	to	be	repeated
}



Recap:	for	loop	syntax

initialization int i =	0; Initialise a	loop	control	variable (LCV)	e.g.	i.
It	can	include	a	variable	declaration.

boolean
condition

i <	4; Is	a	valid	boolean condition that	typically	tests	
the	loop	control	variable	(LCV).

post-body	
action

i++ A	change	to	the	loop	control	variable	(LCV).
Contains an	assignment	statement.



Recap:	for	loop	flowchart

statement(s)trueboolean
condition?

false

update



Recap:	for	loop	flowchart

for(int i =	0;	i <	4;	i++)	
{
System.out.println(i);

}

statement(s)trueboolean
condition?

false

update



for	loop:	for	iterating	over	a collection

Increment 
index by 1

for each value of i less than the size of the collection, 
print the next note, and then increment i



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



Recap:	while	loop	pseudo	code

while(loop condition) {
loop	body

}	

while we wish to continue, do the things in the loop body

boolean condition
while keyword

Statements to be repeated

Pseudo-code expression of the actions of 
a while loop

General form of a while loop



Recap:	while	loop	construction

Declare	and	initialise loop	control	variable	(LCV)
while(condition	based	on	LCV)
{

“do	the	job	to	be	repeated”
“update	the	LCV”

}

This	structure	should	always	be	used



Recap:	while	loop	flowchart

int i =	1;
while	(i <=	10)
{

System.out.println(i);
i++;

}

statement(s)
true

boolean
condition?

false



while	loop:	iterating over	a	collection

Increment i
by 1

while the value of i is less than the size of the collection, 
print the next note, and then increment i



for versus	while
Variable	i is	the	
Loop	Control	Variable	(LCV).		
It	must	be	initialised,	tested	
and	changed.

int i =	0 is	the	initialisation.

i <	notes.size()	is	the	test.

i++	is	the	post-body	action	
i.e.	the	change.



Topic	list
1. Grouping	Objects	

– Developing	a	basic	personal	notebook	project	using	Collections
e.g.	ArrayList

2. Indexing within	Collections
– Retrieval	and	removal	of	objects	

3. Generic	classes	
– e.g.	ArrayList

4. Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• Next	Lecture:	coding	a	Shop	Project	that	stores	an	ArrayList
of	Products.



for	each	loop:	pseudo	code

for(ElementType element : collection) {
loop	body

}	

For each element in collection, do the things in the loop body.

loop header
for keyword

Statement(s) to be repeated

Pseudo-code expression of the actions 
of a for-each loop

General form of the for-each loop



for	each	loop:	iterating over	a	collection

for each note in the notes collection, print out note



for	each	loop

• Can	only	be	used	for	access;	
– you	can’t	remove	the	retrieved	elements.

• Can	only	loop	forward	in	single	steps.

• Cannot	use	to	compare	two	collections.



for	each	versus while

• for-each:
– easier	to	write.
– safer:	it	is	guaranteed	to	stop.

• while:
– we	don’t	have to	process	the	whole	collection.	
– doesn’t	even	have	to	be	used	with	a	collection.
– take	care:	could	be	an	infinite	loop.



Summary

• Java	Collections Framework
– ArrayList

• import java.util.ArrayList;
• private ArrayList <String> notes;
• notes = new ArrayList <String>();
• notes.add(note);
• notes.size();
• notes.get(noteNumber)
• notes.remove(noteNumber);

• Iterating	collections
– for	each

• for (String note : notes) 
{System.out.println(note);}



Questions?


