Inheritance

Exploring Polymorphism

Produced Dr. Siobhdn Drohan
by: Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

@ Waterford Institute of Technology Department of Computing and Mathematics
A

,.f; INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/



Lectures and Labs

* This weeks lectures and labs are based on
examples in:

— Objects First with Java - A Practical Introduction
using BluelJ, © David J. Barnes, Michael Kdlling
(https://www.bluej.org/objects-first/)




Topic List

1. Method polymorphism
— e.g. display()

Static and dynamic type

Overriding
Dynamic method lookup

Al

Protected access



Social NetworkV2 — Inheritance Hierarchy

NewsFeed

Post

>
< aisplay )

MessagePost PhotoPost




Testing the display() method...

username

message

likes

comments

Create this MessagePost _




Testing the display() method...

Create this PhotoPost

= benandjerrys Imagring ke Cream?
view sll 211 comments

username

filename

caption

likes

comments



RECAP:
Social Network V2 - Using inheritance

Superclass — Post

username
timestamp i

S Common fields
comments

like

unlike
addComment
getTimeStamp
display

PhotoPost

MessagePost

Specific fields. b Specific fields.

caption

getText

getlmageFile
getCaption

Subclasses




Testing the display() method...

Leonardo da Vinci
Had a great idea this morning.
But now I forgot what it was. Something to do with flying
40 seconds ago - 2 people like this.
No comments.

Alexander Graham Bell
[experiment. jpg]
I think I might call this thing 'telephone'.
12 minutes ago - 4 people like this.
No comments.

Leonardo da Vinci
40 seconds ago - 2 people like this.
No comments.
what we have
Alexander Graham Bell —
12 minutes ago - 4 people like this.
No comments.

message filename caption are missing from what we have. i.e. the subclass specific fields



The problem B

* Thedisplay () methodin Post
only prints the common fields.

* Inheritance is a one-way street:
— A subclass inherits the superclass fields.
— The superclass knows nothing about its subclass’s fields.



Attempting to solve the problem?

3)NewsFeed cannotfindadisplay () method in

Post

~

2) But " s fields are private.

1) Place adisplay () where it has
access to the information it needs.

 j.e.in each subclass
— One version for MessagePost
— One version for PhotoPost

PhotoPost



Topic List

1. Method polymorphism
— E.g. display()

2. Static and dynamic type

3. Overriding
4. Dynamic method lookup
5. Protected access



Static type and dynamic type

A more complex type hierarchy requires
further concepts to describe it.

* Some new terminology:
— static type
— dynamic type
— method dispatch/lookup



Lets revisit our vehicle example...

Vehicle

subclass objects

may be assigned to
superclass variables

Car Bicycle

Vehicle vl
Vehicle v2
Vehicle v3

new/Vehicle() ;
ne
new\Bicycle() ;




Static and dynamic type -

N\

Car Bicycle

@the typeof) Ca'r\cl = new Car () ;

The declared
type of a variable
is its static type.

@the typ@ Vehicle vl = new Car();

The type of the object
a variable refers to is
its dynamic type.




Static and dynamic type

Vehicle

N\

Car Bicycle

The compiler’s job is to check

for static-type violations.

What is the type of v1? Veh:.cle vl

The declared
type of a variable
is its static type.

= new Car () ;

\

The type of the
object a variable
refers to is its
dynamic type.




Recall our attempt to solve this problem...

Leonardo da Vinci
Had a great idea this morning.
But now I forgot what it was. Something to do with flying
40 seconds ago - 2 people like this.
No comments.

Alexander Graham Bell
[experiment. jpg]
I think I might call this thing 'telephone'.
12 minutes ago - 4 people like this.
No comments.

Leonardo da Vinci
40 seconds ago - 2 people like this.
No comments.
what we have
Alexander Graham Bell —
12 minutes ago - 4 people like this.
No comments.

message filename caption are missing from what we have. i.e. the subclass specific fields



Recall our attempt to solve this problem...

NewsFeed We placed display () in each subclass
- where it has access to the information it
bost needs.
But:

A

I MessagePost PhotoPost

"s fields are private and
NewsFeed cannot find a

I
display () methodin

for (Post post : posts) {
post.display() ;

// But there is no display() method in
//
// Compile-time error (static-type violation)
//
// because method display() is not found
// in the class




Topic List

1. Method polymorphism
— display()

2. Static and dynamic type

4. Dynamic method lookup

5. Protected access



Overriding - the solution to our problem

MessagePost PhotoPost
aisplay aisplay
—

< display () method in both super and sub classes. ‘ ;

Post

\'}

display

< Satisfies both static and dynamic type checking.




Overriding

Superclass and subclass define methods
— with the same sighature.

Each has
— access to the fields of its class.

Superclass satisfies static type check.

Subclass method is called at runtime
— it overrides the superclass version.

What becomes of the superclass version?
— Lets see...



Topic List

1. Method polymorphism
— display()

2. Static and dynamic type

3. Overriding

4. Dynamic method lookup

5. Protected access



Dynamic method lookup
v1. display(); Post
| PhotoPost
PhotoPost v1; -
//\ insfance';f Inheritance but no overriding.

: PhotoPost

The inheritance
is ascende
searching for a match.

ierarchy




Dynamic method lookup

v1. display(); Post |

display

Post vi;

PhotoPost
display :
/\ instance of

Poly)&orphism and overriding.

The ‘first’ version found is used.




Dynamic method lookup summary

T
T
T

T

S o

ne variable is accessed.
ne object stored in the variab

ne class of the object is found.

ne class is searched for a met

hierarchy is exhausted.
7. Overriding methods take precedence

i.e. stop when you find a match.

e is found.

nod match.

If no match is found, the superclass is searched.
This is repeated until a match is found, or the class



Super call in methods

e Qverridden methods are hidden

— but we often still want to be able to call them
explicitly.

e An overridden method
can be called from the method that overrides it.

— super .method (.. .)

— Recall we used super in our constructors.

(aEm

——
v




e.g. calling an overridden method

public void display ()
{
super .display() ;
System.out.println(" [" +
filename +
H]") ;

System.out.println(" " + caption);




Method polymorphism

* We have been discussing
polymorphic method dispatch.

* A polymorphic variable
can store objects of varying types.

 Method calls are polymorphic.

— The actual method called
depends on the dynamic object type.



The instanceof operator

‘ instanceof is used to determine the dynamic type.

* It can recover ‘lost’ type information.

* |t usually precedes assignment
with a cast to the dynamic type:

N

if (post instanceof MessagePost?\{_;

MessagePost msg =(Z§§E%agePost) ?EEEZ>

.. €.g. then access MessagePost methods via msg ..




Recall the Object class...

java.lang

Class Object

java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

Since:

JDK1.0




Recall the Object class...

. . Object
All classes inherit from
Object.
java.lang String Person —— Vehicle
Class Object TR
) ) Car Bicycle
java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

Since:
JDK1.0




Methods in
Object are
inherited by all
classes.

Any of these may
be overridden.

Modifier and Type
protected Object

boolean

protected void

Class<?>
int

void
void

String

void

void

void

Method and Description

clone()

Creates and returns a copy of this object.

equals(Object obj)

Indicates whether some other object is "equal to" this one.

finalize()

Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object.

getClass()

Returns the runtime class of this Object.

hashCode()

Returns a hash code value for the object.

notify()

Wakes up a single thread that is waiting on this object's monitor.
notifyAll()

Wakes up all threads that are waiting on this object's monitor.
toString()

Returns a string representation of the object.

wait()

Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll() method for this object.

wait(long timeout)
Causes the current thread to wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed.

wait(long timeout, int nanos)

Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll() method for this object, or some
other thread interrupts the current thread, or a certain amount of real
time has elapsed.




Modifier and Type Method and Description

protected Object clone()
Creates and returns a copy of this object.

boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.

protected void finalize()

Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object.

Class<?> getClass()
Returns the runtime class of this Object.
int hashCode()
Returns a hash code value for the object.
void notify()
Wakes up a single thread that is waiting on this object's monitor.
void notifyAll()

Wakes up all threads that are waiting on this object's monitor.

String toString()
Returns a string representation of the object.

void wait()
Causes the current thread to wait until another thread invokes the

] AN Ll al Ll - o= PR VRN L1 1L

The toString method is commonly overridden:

public String toString()

this object.

er thread invokes the
this object, or a

~ad invokes the

Returns a string representation of the object. this object, or some

ain amount of real

time has elapsed.




Overriding toStringin Post

public String toString/()
{

String text = username + "\n" + timeString(timestamp) ;

if (likes > 0) {

text += " - " + likes + " people like this.\n";
}
else {

text += "\n";

1f (comments.isEmpty()) {
return text + " No comments.\n";
}
else {
return text + " " 4+ comments.size () +

" comment(s). Click here to view.\n";



Overriding toString

* Explicit print methods

can often be omitted from a class:
System.out.println(post.toString());

* Callsto println with just an object
automatically result in toString ()
being called:

System.out.println (post) ;

 We’'ve seen how we can override how the object
is printed by creating a toString () method



Topic List

1. Method polymorphism
— display()

2. Static and dynamic type

3. Overriding

4. Dynamic method lookup

5. Protected access



Protected access

* Private access in the superclass
— may be too restrictive for a subclass
* Only methods of the class can access the fields.
e Subclass methods can’t

* Inheritance is supported by protected access.
— Subclass methods can access the fields of the class they inherit from

* Protected access is
— more restricted than public access.

Subclass1




Access levels

SomeClass

K > private

Subclassi Subclass2

protected

public — all methods in all classes have access
private — only methods in that class have access
protected — only methods in that class, and subclasses have access



Review

The declared type of a variable is its static type.
— Compilers check static types.

The type of an object is its dynamic type.
— Dynamic types are used at runtime.

Methods may be overridden in a subclass.
Method lookup starts with the dynamic type.
Protected access supports inheritance.



Any
Questions?




