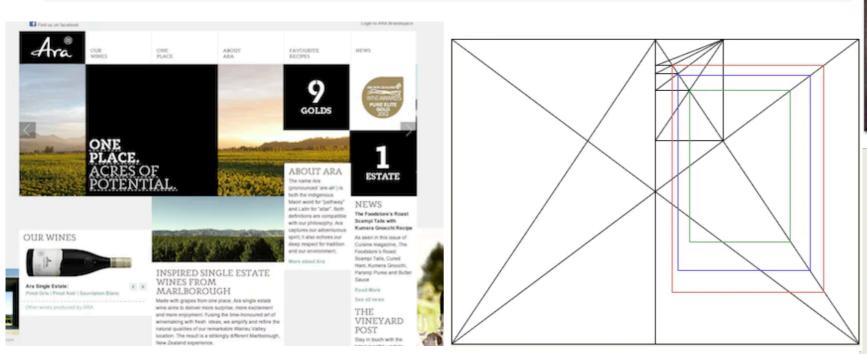
# Semantic UI

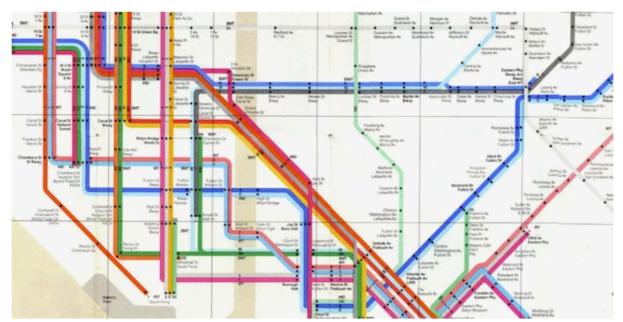
Grids & Images

#### **Grids**

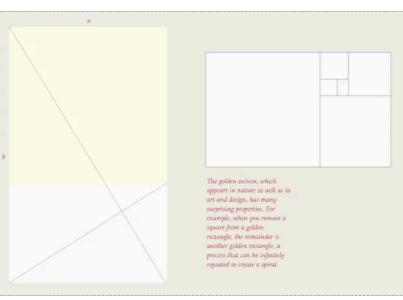
A grid is a structure with a long history used to align negative space in designs.

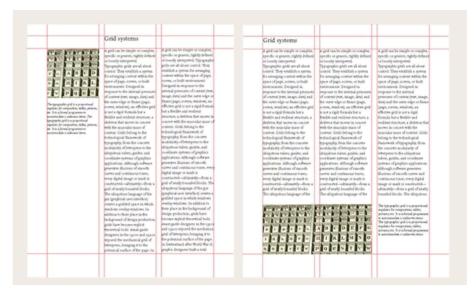
Using a grid makes content appear to flow more naturally on your page.





Toggle Animation




## https://99designs.ie/blog/tips/history-of-the-grid-part-1


History of the design grid





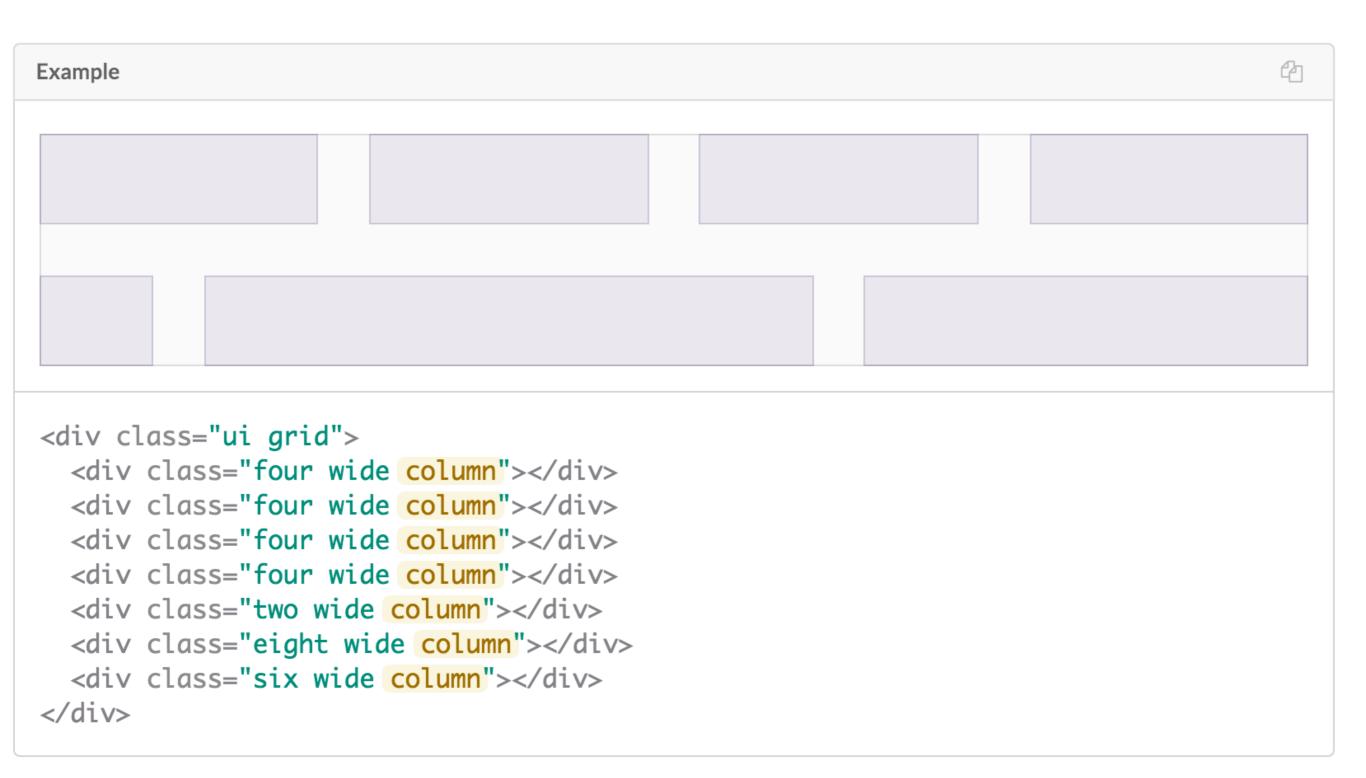






### **Columns**

<>


Grids divide horizontal space into indivisible units called "columns". All columns in a grid must specify their width as proportion of the total available row width.

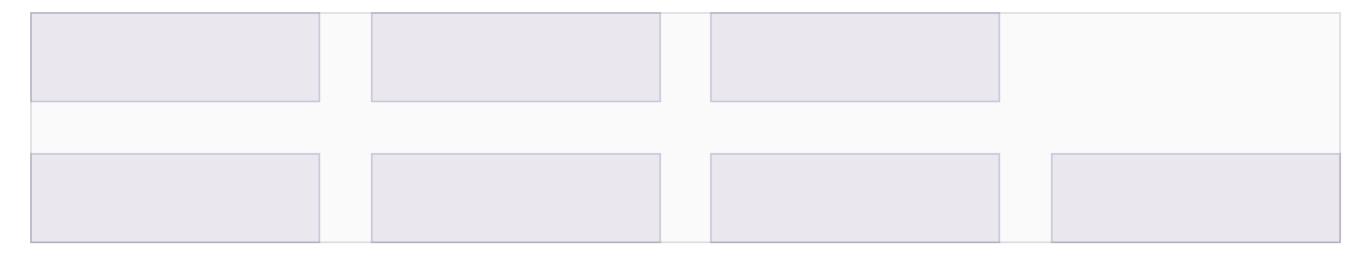
All grid systems chooses an arbitrary column count to allow per row. Semantic's default theme uses **16 columns**.

The example below shows four four wide columns will fit in the first row, 16 / 4 = 4, and three various sized columns in the second row. 2 + 8 + 6 = 16

The default column count, and other arbitrary features of grids can be changed by adjusting Semantic UI's underlying theming variables.






### **Rows**

**<>** 

Rows are groups of columns which are aligned horizontally.

Rows can either be *explicit*, marked with an additional **row** element, or *implicit*, automatically occurring when no more space is left in a previous row.

After each group of columns vertical spacing is added to separate each group of columns, creating vertical rhythm.





## Grids in IoT Site



## Department of Computing & Mathematics

BSc (Hons) the Internet of Things

How to adapt this to render as shown below?

# Department of Computing & Mathematics



BSc (Hons) the Internet of Things

# Department of Computing & Mathematics

BSc (Hons) the Internet of Things





Two Columns

# Department of Computing & Mathematics

BSc (Hons) the Internet of Things



combining grid with segment

+ introducing 2 "ui column" divisions

# Centre Alignment + ui image

# Department of Computing & Mathematics

BSc (Hons) the Internet of Things



<header class="ui two column center aligned grid segment">

# Department of Computing & Mathematics



BSc (Hons) the Internet of Things

# Middle Alignment

# Department of Computing & Mathematics



BSc (Hons) the Internet of Things



## Department of Computing & Mathematics

BSc (Hons) the Internet of Things

# Department of Computing & Mathematics

BSc (Hons) the Internet of Things



# Department of Computing & Mathematics

BSc (Hons) the Internet of Things



# Department of Computing & Mathematics

BSc (Hons) the Internet of Things



<header class="ui two column center aligned middle aligned grid segment">

# **Image**

An image is a graphic representation of something

Size

An image may appear at different sizes



Semantic uses arbitrary default values for image sizes from mini to massive. It is recommended to update these with values used in your project in image.variables .

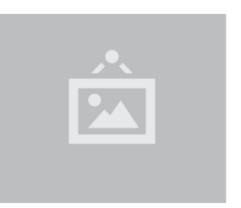
| Class Name | Size  |
|------------|-------|
| Mini       | 35px  |
| Tiny       | 80px  |
| Small      | 150px |
| Medium     | 300px |
| Large      | 450px |
| Big        | 600px |
| Huge       | 800px |
| Massive    | 960px |








```
<img class="ui mini image" src="/images/wireframe/image.png">
<img class="ui tiny image" src="/images/wireframe/image.png">
<img class="ui small image" src="/images/wireframe/image.png">
<img class="ui medium image" src="/images/wireframe/image.png">
<img class="ui large image" src="/images/wireframe/image.png">
<img class="ui big image" src="/images/wireframe/image.png">
<img class="ui huge image" src="/images/wireframe/image.png">
<img class="ui mage" src="/images/wireframe/image.png">
<img class="ui mage" src="/images/wireframe/image.png">
<img class="ui mage" src="/images/wireframe/image.png"></img class="ui huge image" src="/i
```




# Image Variations













## **Variations**

Avatar

Bordered

Fluid

Rounded

Circular

Vertically Aligned

Centered

Spaced

Floated

Size

# Grids & Image Example - Before



# Grids & Image Example - After



- Grid center aligned
- Two Rows
  - Row 1 single column
  - Row 2 3 columns

## Grids & Image Example - After

Supported by leading edge research at...







```
<section class="ui grid segment">
 <section class="ui row">
   Supported by leading edge research at... 
 </section>
 <section class="ui three column row">
   <div class="ui column">
     <img class="ui image" src="assets/images/tssg.png">
   </div>
   <div class="ui column">
     <img class="ui image" src="assets/images/ctrg.png">
   </div>
   <div class="ui column">
     <img class="ui image" src="assets/images/automotive.png">
   </div>
 </section>
</section>
```

#### **Programming**

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a porfolio of facinating aplications.

#### **Data Science**

At the heart of many IoT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

#### **Devices**

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. C world is the subject of this strand.

#### **Networks**

This strand will explore modern networks and cloud technolc categories of computer systems from simple controlers to sir workstations.

#### **Project**

Building exciting IoT projects in every semester of the progra from the other strands and enable you to build a comprehens and services.

#### **Mathematics**

Introduce foundation concepts for many of the more applied mathematical techniques in a modern context and apply core



## **Programming**

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a porfolio of facinating aplications.

### **Networks**

This strand will explore modern networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

**Data Science** 

At the heart of many IoT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

Text Grid Example

#### **Devices**

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

## **Project**

Building exciting IoT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of IoT applications and services.

## **Mathematics**

Introduce foundation concepts for many of the more applied concepts in the other Strands.

Learn mathematical techniques in a modern context and apply core principles in new an interesting ways.

#### **Programming**

**Networks** 

workstations.

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a porfolio of facinating aplications.

This strand will explore modern

networks and cloud technology.

computer systems from simple

controlers to single board board

computers, mobiles and full

manage all categories of

Be able to configure, network and

#### applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately

**Data Science** 

At the heart of many IoT turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

Building exciting IoT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of IoT applications and services.

Project

#### Devices

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

#### **Mathematics**

Introduce foundation concepts for many of the more applied concepts in the other Strands. Learn mathematical techniques in a modern context and apply core principles in new an interesting ways.

- Two Rows
  - Row 1 three columns
  - Row 2 three columns

```
<section class="ui grid segment">
  <section class="ui three column row">
   <article class="column">
       ... code for the first column
   </article>
   <article class="column">
       ... code for the second column
   </article>
   <article class="column">
       ... code for the third column
   </article>
 </section>
  <section class="ui three column row">
    <article class="column">
       ... code for the first column
   </article>
   <article class="column">
       ... code for the second column
   </article>
   <article class="column">
       ... code for the third column
   </article>
  </section>
</section>
```