Programming

Loam a broad range of programming and problem solving skills, including excithg new platforms, software tools and languages. Uso these skills to bulld apps for mobile, cloud and device besed loT applications. Evolve a porfollo of facinating aplications.

Networks

This strand will explore modom networks and cloud technology. Be able to conflgure, network and manage all catogorios of computor systoms from simple controlers to single board board computers, mobiles and full workstations.

Data Science

At the heart of many loT applications is data: measurements, events alarms and other information that mest be relayed, stored and ultimatoly tumed into knowledge. Leam the fundamentals of modem approsches to data in this strand.

Project
Bulding exciting lot projects in every semestar of the programme. Your projects will combine skills scquired from the other strands and enablo you to build a comprehensive an compeling portfollo of IoT applications and services.
π

Department of Computing \&

Mathematics

BSC (Hons) the Internet of Things

Programming

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

Networks

This strand will explore modern networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

Data Science

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

Project

Building exciting loT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of IOT applications and services.

Devices

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

Mathematics

Introduce foundation concepts for many of the more applied concepts in the other Strands. Learn mathematical techniques in a modem context and apply core principles in new an interesting ways.

Department of Computing \&

BACHELOR OF SCIENCE (HONOURS)

APPLIED COMPUTING IN THEINTERNET

 of thincs
Program your World:

An exciting new level 8 Honours Degree for 2015.
Combine Programming and Electronics and learn how to code cool devices, places and things. Be part of the next wave of innovation in Computing

Programming

Learn a broad range of programming and problem solving skills, inclualing exciting new platforms, software tools and
languages. Use these skills to build apps or mobile, cloud and device based IoT applications. Evolve a porfolio of
facinating aplications.

Networks

This strand will explore modern networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

Data Science

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

⼭ll

Project

Building exciting IoT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of Iot applications and services.

Devices

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to
sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

Mathematics

Introduce foundation concepts for many of the more applied concepts in the other Strands. Learn mathematical techniques in moden context and apply core principles in new an interesting ways:

RUTOMOTIUE CONTROL GROUP

Icons

http://semantic-ui.com/elements/icon.html

Alarm

Browser

Code

Copyright

Alarm Slash

Bug

Comment

Dashboard

Alarm Outline
\square
Calendar Outline

Dropdown

D
Alarm Slash Outline

At

Icons

facebook twitter linkedin

```
<footer class="ui segment">
    <p class="footer-social-links">
        <a href="http://www.facebook.com/witcomp"> facebook </a>
        <a href="http://twitter.com/ComputingAtWIT"> twitter </a>
        <a href="https://ie.linkedin.com/pub/computing-at-wit/a9/221/1b6"> linkedin </a>
    </p>
</footer>
```


f in

```
<footer class="ui center aligned segment">
    <a href="http://www.facebook.com/witcomp"> <i class="large facebook icon"></i> </a>
    <a href="href='http://twitter.com/ComputingAtWIT"> <i class="large twitter icon"></i> </a>
    <a href="href='http://www.linkedin.com/pub/computing-at-wit"> <i class="large linkedin icon"></i> </a>
</footer>
```


Colours

http://semantic-ui.com/usage/theming.html

```
@primaryColor : @pink;
@secondaryColor : @grey;
@red : #B03060;
@orange : #FE9A76;
@yellow : #FFD700;
@olive : #32CD32;
@green : #016936;
@teal : #008080;
@blue : #0E6EB8;
@violet : #EE82EE;
@purple : #B413EC;
@pink : #FF1493;
@brown : #A52A2A;
@grey : #A0A0A0;
@black : #000000;
```

ALL COLORS

<article class="red column">

<h2> Programming </h2>

<p>
Learn a broad range of programming and problem solving skills, including exciting new platforms, softwar languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a facinating aplications.
</p>
</article>
-••

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a porfolio of facinating aplications.

Data Science

At the heart of many loT applications is data: measurements, events alarms and other inforn that must be relayed, stored and ultimately tur knowledge. Learn the fundamentals of moderr approaches to data in this strand.

Networks

This strand will explore modem networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

Project

Building exciting loT projects in every semest programme. Your projects will combine skills from the other strands and enable you to builc comprehensive an compelling portfolio of IOT applications and services

<section class="ui three column row">
<article class="red column">
</article>
<article class="orange column">
</article>
<article class="yellow column"> </article>

\section*{</section>}
<section class="ui three column row"> <article class="olive column"> </article>
<article class="green column">

\section*{</artic}

\section*{Programming}
<articl
Learn a broad range of programming and problem solving skills, including exciting new platforms,
</artic software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

\section*{Networks}

This strand will explore modem networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

\section*{Data Science}

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

Building exciting loT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of loT applications and services.

\section*{Devices}

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

Introduce foundation concepts for many of the more applied concepts in the other Strands. Learn mathematical techniques in a modern context and apply core principles in new an interesting ways.

\section*{Programming}

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

\[
\begin{aligned}
& \text { <i class="huge settings icon"></i> } \\
& \text { <i class="huge bar chart icon"></i> } \\
& \text { <i class="huge space shuttle icon"></i> } \\
& \text { <i class="huge cloud upload icon"></i> } \\
& \text { <i class="huge lab icon"></i> } \\
& \text { <i class="huge wizard icon"></i> }
\end{aligned}
\]
```
<article class="red column">
    <h2> Programming </h2>
    <p>
        Learn a broad range of programming and problem solving sk
    </p>
    <div clasS="ui two column grid">
        <div class="left aligned column">
            <i class="huge settings icon"></i>
        </div>
        <div class="right aligned column">
            <a href="strands/programming.html" class="strandlink">
                <i class="huge sign in icon"></i>
            </a>
        </div>
    </div>
</article>
```

\section*{Programming}

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.
- Encapsulate icons in 2 column grid
- Left align first icon
- Right align second icon

\section*{Raised Segment}
```
Raised
A segment may be formatted to raise above the page.
```
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo.
```
```
Example
```
Example
<div class="ui raised segment">
<div class="ui raised segment">
<div class="ui raised segment">
    <p>Pellentesque habitant morbi tristique senectus et netus et
    <p>Pellentesque habitant morbi tristique senectus et netus et
    <p>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo.</p>
eleifend leo.</p>
eleifend leo.</p>
</div>
```
</div>
```
</div>
```

\section*{Padded Segment}
Padded <>
A segment can increase its padding
Example Al

<div class="ui padded segment">
<div class="ui padded segment">
 <p></p>
 <p></p>
</div>
</div>

\section*{Stacked Segment}

\section*{Stacked}

A segment can be formatted to show it contains multiple pages

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo.
```
<div class="ui stacked segment">
    <p>Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies
eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper.
Aenean ultricies mi vitae est. Mauris placerat eleifend leo.</p>
</div>
```

\section*{<section class="ui three column padded stacked grid segment">}

\section*{Programming}

Learn a broad range of programming and problem solving skills, including exclting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

\section*{Networks}

This strand will explore modern networks and cloud technology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, mobiles and full workstations.

\section*{Data Science}

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

\section*{Project}

Building exciting loT projects in every semester of the programme. Your projects will combine skills acquired from the other strands and enable you to build a comprehensive an compelling portfolio of loT applications and services.

\section*{Devices}

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like trafic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

\section*{Mathematics}

Introduce foundation concepts for many of the more applied concepts in the other Strands. Learn mathematical techniques in a modern context and apply core principles in new an interesting ways.
\(\%\)

Programming

The loT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloudservices, and may be capable of leveraging large data sets to deliver inferences and decision support in an informedmanner. The software i:
developmentand quality user experiences.

\section*{Year 1}

Semester 1
Semester 2

Progran Fundame

\section*{Web}

Development I

\section*{Develop}

Programming Learning Path
The Data Science strand will begin with the fundamentals of relational databa: and descriptive analysis required to predict future events and to identify relati managing unstructured data) databases and data warehouses (supporting co the IOT context the importance of dealing with large volumes of data in terms appropriate data solution with a complete understanding and knowledge of th
```
<section class="ui segment">
    <article>
            <h1> Programming </h1>
            <p>
                <img class="strand-right-img" src="../assets/images/iot/programming/pro
                    The IoT requires a new breed of software skills, with an emphasis on fl
            </p>
        </article>
    <figure>
            <img class="strand-timeline-img" src="../assets/images/iot/timeline.png">
            <img class="strand-modules-double-img" src="../assets/images/iot/programm
    </figure>
    <article>
        <h2> Programming Learning Path </h2>
        <p>
            The Data Science strand will begin with the fundamentals of relational
            </p>
    </article>
    </section>
```

\section*{- Text not positioned correctly}
- Images set to default size

\section*{Strand Pages}
- Make the segment a 'grid'
```

\vdash index.html
\vdash strands
| - data.html
■ devices.html
maths.htmL
networks.html
\vdash programming.html
project.html
style.css

```
- Rework each strand page to row/column structure
- + use 'ui image’ for consistent image sizing

Department of Computing \& Mathematics BSC (Hons) the Internet of Things

Mathematics
The Mathematics Strand underpins most of the other strands: its purpose is to provide a rigorous foundation for manyof the more applied concepts met in
the other Strands. As such it is offered early in the course. the other Strands. As such it is offered early in the course.
of concepts such as logic (cf. Programming), complexity and recurrence (cf. Algorithms), sets (cf. Data Structures), enumeration (cf. Statistics), relations (cf.
 ensure that all students have a basic mathematical iliteracyin such topics. In such a one semester course, the treatment will necessarily be at an
introductory level, but theconcepts will be covered in greater depth later in the

Mathematics Learning Path

\title{
Department of Computing \& \\ Mathematics
}

\section*{BSc (Hons) the Internet of Things}

\section*{Programming}

The loT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloud services, and may be capable of leveraging large data sets to deliver inferences and decision support in an informed manner. The software is designed and implemented using agile techniques, with an emphasis on test driven development and quality user experiences..

\section*{Learning Paths}

The Data Science strand will begin with the fundamentals of relational databases used to store structured transactional business data. This data holds the basis for reporting and descriptive analysis required to predictfuture events and to identify relationships in data. In the third year the students will extend their knowledge to NoSQL (especially year the students will extend their knowledge to NoSQL (especially for managing unstructured data) databases and data warehouses (supporting consistent views of a domain, and as a springboard for
statistics and machine learning analyses). In the loT context the tatistics and machine learning analyses). In the loT context the importance of dealing with large volumes of data in terms of storage and analytics is great. The skills they learn will allow them to design and implement the appropriate data solution with a complete understanding and knowledge of the available options. The students will learn about the trade-offs in terms of consistency, availability and partitioning. In the fourth year students will learn and implement the skills of data mining covering classification, prediction and clustering, applied to data that had been managed using methods and technologies they have learned about in previous years.

\section*{ui grid}
- Each grid is 16 units
- "eight wide" consumes half the available width
> ‘sixteen wide’ consumes full available width

\section*{Programming}

The loT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloud services, and may be capable of leveraging large mats to deliver inferences and decision support in an inform techniques, with an emphasis on test driven development and quality
user experiences..

\(\underset{\substack{\text { Appolcation } \\ \text { Dement }}}{ }\)

\section*{Learning Paths}

The Data Science strand will begin with the fundamentals of relationa atabases used to store structured transactional business data. This data holds the basis for reporting and descriptive analysis required to predictiuture events and to identify relationships in data. In the third year the students wir extend their knowedge to NoSQL (especialy (supporting unstur (supporting consis wiew of a dom, and as a springboard for atistics and machine learning analyses). In the Io T context he mportance of dealing with large volumes of data in terms of storage and analytics is great. The skils they learn wil allow them to des and implement the appropriate data solution win a complete understanding and knowledge of ave avable options. The students luin in the form palls mills of cor mang applied to data that had been managed using methods and
technologies they have learned about in previous years.
<article class="eight wide column"> <h1. Programming </h1>
<p>
The lut requires a new breed of software ski </p>
</article>
<aside class="eight wide column">
<img class="ui image" src=". ./assets/images/io </aside>
<figure class="sixteen wide column"> <img class="ui image" src="../assets/images/io <img class="ui image" src="../assets/images/io </figure>
- We could have used 'ui row' as well, but just using cols will also suffice

\section*{Department of Computing \& Mathematics}

BSc (Hons) the Internet of Things

\section*{Banner Segment -current}

\section*{Programming}

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

\section*{Data Science}

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this

\section*{Devices}

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

\section*{background image}
```

-banner {
background: url("/assets/images/banner_jpg") top center;
background-position: top center;
color: white;
height:300px;
}

```

```

<article class="banner">
    <div>
        <p>
            BACHELOR OF SCIENCE (HONOURS)
        </p>
        <h3>
            APPLIED COMPUTING IN THE INTERNET OF THINGS
        </h3>
        <h3>
            Program your World!
        </h3>
        <p>
            An exciting new level }8\mathrm{ Honours Degree for 2015. Combine Programming
            to code cool devices, places and things. Be part of the next wave of
        </p>
    </div>
</article>
```


\section*{Department of Computing \& Mathematics}

Waterford Institute of Technology institiuid teicneolaiochta phort lairge

BSc (Hons) the Internet of Things

BACHELOR OF SCIENCE (HONOURS)
APPLIED COMPUTING IN THE INTERNET OF THINGS

Program your World!
An exciting new level 8 Honours Degree for 2015. Combine Programming and Electronics and learn how to code cool devices, places and things. Be part of the next wave of innovation in Computing

Programming
Data Science

\section*{Devices}
```

<section class="ui grid">
    <article class="ui seven wide column raised blue segment">
        <div>
            <p>
                BACHELOR OF SCIENCE (HONOURS)
            </p>
            <h3>
                    APPLIED COMPUTING IN THE INTERNET OF THINGS
            </h3>
            <h3>
                    Program your World!
            </h3>
            <p>
                    An exciting new level }8\mathrm{ Honours Degree for 2015. Combine Programming
                </p>
            </div>
    </article>
```
</section>
Waterford Institute of Technology instimuid tecneolaiochta phort Larce

Department of Computing \& Mathematics

BSC (Hons) the Internet of Things

```
BACHELOR OF SCIENCE (HONOURS)
```

BACHELOR OF SCIENCE (HONOURS)
APPLIED COMPUTING IN THE INTERNET OF
APPLIED COMPUTING IN THE INTERNET OF
thincs
thincs
Program your World:
Program your World:
An exciting new level 8 Honours Degree for 2015. Combine Programming and Electronics and learn how to code cool

``` devices, places and things. Be part of the next wave of innovation in Computing

\section*{Computing \&} Mathematics

\section*{BSc (Hons) the Internet of Things}

\section*{Programmin}

The IoT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloud services, and may be capable of leveraging large data sets to deliver inferences and decision support in
BACHELOR OF SCIENCE (HONOURS)
APPLIED COMPUTING IN THE INTERNET OF THINGS
Program your World!


BSc (Hons) the Internet of Things

Waterford Institute of Technology institiúid teicneolaíochta phort láirge

\section*{Programming}

The loT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloud services, and may be capable of leveraging large data sets to deliver inferences and decision support in an informed manner. The software is designed and implemented using agile techniques, with an emphasis on test driven development and quality user experiences..


\section*{Programming}

Learn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based IoT applications. Evolve a porfolio of facinating aplications.
\(\square\)

\section*{Data Science}

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.
-

\section*{Devices}

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic lights or cameras. Connecting to and interacting with the physical world is the subject of this strand.

\section*{Responsive Layouts}

Grid

Grids
A grid is a structure with a long history used to align negative space in designs.

Using a grid makes content appear to flow more naturally on your page.
Toggle Animation
\begin{tabular}{|l|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

Columns
Grids divide horizontal space into indivisible units called "columns". All columns in a grid must specify their width as proportion of the total available row width.

All grid systems chooses an arbitrary column count to allow per row. Semantic's default theme uses 16 rolumns

\section*{Introduction}

Grids
Columns
Rows
Gutters
Negative Margins
Page Grids
Columns

Rows
Varying Grids
Responsive Grids
Containers
Stackable
Reverse Order
Doubling
Manual Tweaks

\section*{Responsive Grids}

A stackable grid will automatically stack rows to a single columns on mobile devices

\section*{Example}
```

\square

<div class="ui stackable four column grid">
 <div class="column"></div>
 <div class="column"></div>
 <div class="column"></div>
 <div class="column"></div>
</div>
```
- Grid elements 'stackable' if the browser width to narrow


\section*{Computing}
\& Mathematics

BSc (Hons) the Internet of Things

\section*{Department of Computing \& \\ Mathematics}

BSc (Hons) the Internet of Things

Waterford Institute of Technology
INSTITIÚID TEICNEOLAIOCHTA PHORT LÁIRGE
```

<header class="ui two column center aligned middle aligned stacked stackable grid segment">
 <div class="column">
 <h2 class="ui header"> Department of Computing & Mathematics </h2>
 <h3 class="ui header"> BSc (Hons) the Internet of Things </h3>
 </div>
 <div class="column">
 <p>

 </p>
 </div>
</header>
```
- Distinguish between ‘stackable’ and ‘stacked’?

\section*{Programming}
_earn a broad range of programming and problem solving skills, including exciting new platforms, software tools and languages. Use these skills to build apps for mobile, cloud and device based loT applications. Evolve a porfolio of facinating aplications.

\section*{Data Science}

At the heart of many loT applications is data: measurements, events alarms and other information that must be relayed, stored and ultimately turned into knowledge. Learn the fundamentals of modern approaches to data in this strand.

\section*{}

\section*{Devices}

The 'Things' we connect to are often physical devices. These can range from simple temperature sensors to sophisticated control systems like traffic ights or cameras. Connecting to and interacting with the physical world is the subject of this strand

\section*{Networks}


This strand will explore modern networks and cloud echnology. Be able to configure, network and manage all categories of computer systems from simple controlers to single board board computers, nobiles and full workstations.

\section*{Stackable}
```

<section class="ui three column padded stacked stackable grid segment">
<article class="red column">
<h2> Programming </h2>
<p>
Learn a broad range of programming and problem solving skills, includi
software tools and languages. Use these skills to build apps for mob-
IoT applications. Evolve a porfolio of facinating aplications.
</p>
<div class="ui two column grid">
<div class="left aligned column">
<i class="huge settings icon"></i>
</div>
<div class="right aligned column">


```
- 'stackable grid' class makes all columns in the grid stack up as browser narrows

\section*{Devices}

\section*{Stackable Strand Pages}

\section*{<section class="ui three column padded stacked stackable grid segment">}

The loT professional must be comfortable when dealing with the many kinds of devices and sysems that are the means for the Internet to interact with the environment. Sui an awareness of the devices and systems made to perform we attributes may be ch

The loT requires a new breed of software skills, with an emphasis on flexible, reactive, and highly networked applications and services. This software runs on a diverse range of systems, is frequently connected to cloud services, and may be capable of leveraging large data sets to deliver inferences and
Hyh-ped ass nowect tat
aher Sriol Par aner Smind mant decision support in an informed manner. The software is designed and implemented using agile techniques, with an emphasis on test driven development and quality user experiences..



\section*{Semantic-UI Libraries}
- This is the library:
- semantic.css
- + a set of icons and other assets
- The project is not heavily dependent on these files
- semantic.css is linked from all pages:
<link rel="stylesheet" href="/assets/css/semantic.css">

\section*{Alternative Mechanisms for Linking Semantic.css}
- Replace <link rel="stylesheet" href="/assets/css/semantic.css">
- With
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/semantic-ui/2.3.0/semantic.min.css" type="text/css"> <script type="text/javascript" src="http://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/semantic-ui/2.3.0/semantic.min.js"></script>
- Cloud flare is a Content Delivery Network (CDN)
- It hosts many common libraries and assets in the cloud, simplifying access
class ="ui container"
class ="ui segment"
class ="ui header"
class ="ui image"
class ="ui grid"
class ="ui row"
class ="ui column"
class ="ui table"
class ="ui icon"

\section*{Summary of Classes (encountered so far)}

Variations: grid
stackable, \{number\} column (16 for full row)
Variations: segment
raised, stacked, padded, left/center/right aligned, top/middle/bottom aligned, \{colour\}

Variations: table
striped, single line, celled, collapsing
Variations: sizes of image \& icon
mini, tiny, small, medium, large, big, huge, massive```

