
Models

Model View Controller

Database in Play

...
Database configuration 
~~~~~  
Enable a database engine if needed. 
 
To quickly set up a development database, use either: 
- mem : for a transient in memory database (H2 in memory) 
- fs : for a simple file written database (H2 file stored) 
 
db.default=mem
...

conf/application.conf
Configuration file

specifies a
database that will
be integrated into

the application

In Memory test database

Full SQL support

Replaced with ‘production’
database at a later stage

Inspecting the Database in Play

When app is
running, browse to http://localhost:9000/@db

log in to database

Database console

SQL
Panel

Database
Tables

Preloading the Database - YAML

YAML is a widely used notion for
representing structured information

https://en.wikipedia.org/wiki/YAML

An invoice expressed via
YAML. Structure is shown
through indentation (one or
more spaces). Sequence
items are denoted by a

dash, and key value pairs
within a map are

separated by a colon.

invoice: 34843
date : 2001-01-23
bill-to: &id001
 given : Chris
 family : Dumars
 address:
 lines: |
 458 Walkman Dr.
 Suite #292
 city : Royal Oak
 state : MI
 postal : 48046
ship-to: *id001
product:
 - sku : BL394D
 quantity : 4
 description : Basketball
 price : 450.00
 - sku : BL4438H
 quantity : 1
 description : Super Hoop
 price : 2392.00
tax : 251.42
total: 4443.52
comments: >
 Late afternoon is best.
 Backup contact is Nancy
 Billsmer @ 338-4338.

YAML Example

Song s1 = new Song("Piano Sonata No. 3", "Beethoven");  
Song s2 = new Song("Piano Sonata No. 7", "Beethoven");  
Song s3 = new Song("Piano Sonata No. 10", "Beethoven");  
Playlist p1 = new Playlist("Beethoven Sonatas");  
p1.songs.add (s1); 
p1.songs.add (s2); 
p1.songs.add (s3);

Song(s1): 
 title: Piano Sonata No. 3 
 artist: Beethoven 
 duration: 5  
Song(s2): 
 title: Piano Sonata No. 7 
 artist: Beethoven 
 duration: 6  
Song(s3): 
 title: Piano Sonata No. 10 
 artist: Beethoven 
 duration: 8  
  
Playlist(p1): 
 title: Bethoven Sonatas 
 duration: 19 
 songs: 
 - s1 
 - s2 
 - s3

java

yaml

Embedded in a compiled
program.

When running, objects
occupy appropriate in

memory data structures.

Just a File format.

Used to represent structured

information in a flat file.

Must be processed by various

tools in order to be useful.

yaml in Play

data.yml contains the
model representation

Bootstap class
contains instruction
to load a model from

yaml file

yaml in Play

Model data will be
loaded into model

objects

Revised Model Class: Song

package models; 
 
import javax.persistence.Entity;  
 
import play.db.jpa.Model; 
 
@Entity 
public class Song extends Model 
{  
 public String title;  
 public String artist;  
 public int duration;  
  
 public Song(String title, String artist, int duration) 
 { 
 this.title = title; 
 this.artist = artist; 
 this.duration = duration; 
 } 
}

package models; 
 
public class Song 
{  
 public String title;  
 public String artist;  
  
 public Song(String title, String artist) 
 { 
 this.title = title; 
 this.artist = artist; 
 } 
}

“extends” from Model
class (inheritance).

Marked as
“@Entity” (Annotation).

Plain Old Java Object (POJO) Entity Model Object

package models; 
 
import java.util.ArrayList; 
import java.util.List; 
 
import javax.persistence.CascadeType; 
import javax.persistence.Entity;  
import javax.persistence.OneToMany;  
 
import play.db.jpa.Model; 
 
@Entity 
public class Playlist extends Model 
{  
 public String title;
 
 @OneToMany(cascade = CascadeType.ALL)  
 public List<Song> songs = new ArrayList<Song>(); 
 
 public Playlist(String title, int duration) 
 { 
 this.title = title; 
 this.duration = duration; 
 } 
}

package models; 
 
import java.util.ArrayList; 
import java.util.List; 
 
public class Playlist 
{  
 public String title;  
 public List<Song> songs = new ArrayList<Song>(); 
 
 public Playlist(String title) 
 { 
 this.title = title; 
 } 
}

Revised Model Class: Playlist

Plain Old Java Object (POJO) Entity Model Object

“extends” from Model
class (inheritance).

Marked as
“@Entity” (Annotation).

“@OneToMany” (Annotation)
describes Playlist->Song
relationship for database

Song(s1): 
 title: Piano Sonata No. 3 
 artist: Beethoven 
 duration: 5  
Song(s2): 
 title: Piano Sonata No. 7 
 artist: Beethoven 
 duration: 6  
Song(s3): 
 title: Piano Sonata No. 10 
 artist: Beethoven 
 duration: 8  
  
Playlist(p1): 
 title: Bethoven Sonatas 
 duration: 19 
 songs: 
 - s1 
 - s2 
 - s3 localhost:9000/@db

import java.util.List; 
 
import play.*; 
import play.jobs.*; 
import play.test.*; 
  
import models.*; 
  
@OnApplicationStart 
public class Bootstrap extends Job  
{  
 public void doJob() 
 { 
 Fixtures.loadModels("data.yml"); 
 } 
}

When play app starts -
Bootstrap.doJob() called

import java.util.List; 
 
import play.*; 
import play.jobs.*; 
import play.test.*; 
  
import models.*; 
  
@OnApplicationStart 
public class Bootstrap extends Job  
{  
 public void doJob() 
 { 
 Fixtures.loadModels("data.yml"); 
 } 
}

Bootstrap class

Application Lifecycle -> Run Bootstrap doJob
once, when application launched

This pre-loads the database with test objects

localhost:9000/@db

Inspecting the Playlist Table

localhost:9000/@db

Inspecting the Songs Table

