HTTP Post

Post this to the
resource at /light

il



HTTP Post

Pass request to

resource at /light (it's
actually a program)

HTTP Request

POST /light?state=on




HTTP Post

\ ' 4
'4 N\

Display "Light is
0nll
HTTP Response

CE——

200 0K
{"status":"on",
"colour":"white"}




External Data Representations
XML

e eXtensible Markup Language(XML)
e Same heritage as HTML(but XML is NOT HTML)

XML data items are tagged with ‘markup’ strings
» used to describe the logical structure of the data

XML has many uses. For now we confine ourselves to external data
representations

* Has many cool features including
* Extensible

e Textual
* Kind of human readable and machine readable...



XML

<person id="123456789"> <person pers:id="123456789" xmins:pers =
<name>Smith</name> "http://www.cdk5.net/person">
<place>London</place> <pers:name> Smith </pers:name>
<year>1984</year> <pers:place> London </pers:place >
<l--a comment --> <pers:year> 1984 </pers:year>
</person > </person>

 Above shows XML definitions of the Person structure.

* As with xHTML, tags enclose character data.
* Tags : <name>, <place>,<year> data:"Smith”, “London”...

* Namespaces provide a means for scoping names



JSON

* JavaScript Object Notation q
* Lightweight text-based open "id":"example”,
standard designed for human "current_value”:"508",
readable data interchange. "at":"2013-05-06TP0:30:45,.60941887",

. " lue™:"508.8",
* Can represent simple data structures nax_vatue

iati "mi lue":"332.8",
and associative arrays. JLEClL

"version":"1.6.8"

* Good for serializing and transmitting
structured data across a network



JSON

e JSON is a data interchange format
technique

* A collection of name/value pairs.

* Application programming interfaces(APls) exist for most
programming languages

{ { "temperature" :72.55}
"person": {
"id": "123456789",
"name": "Smith",
"place": "London",
"year": "1984"

}
}



More on HTTP

* For an extensive overview, checkout:

http://www.ntu.edu.sg/home/ehchua/programming/webprogramming
/http basics.html




REST

* Short for Representational State
Transfer

* Set of Principles for how web should
be used
* Coined by Roy Fielding
* One of the HTTP creator

*A set of principles that define how
Web standards(HTTP and URIs) can be

used.




Key REST Principles
1.Every “thing” has an identity

* URL

2.Link things together { REST }
* Hypermedia/Hyperlinks

3.Use standard set of methods

 HTTP GET/POST/PUT/DELETE
* Manipulate resources through their representations

4.Resources can have multiple representations
* JSON/XML/png/...
5.Communicate stateless

* Should not depend on server state.



“AP| First” approach

 Collaboratively design, mockup,
implement and document an API
before the application or other
channels that will use it even exist.

* Uses “clean-room” approach.

* the APl is designed with little
consideration for the existing
technology estate.

* the APl is designed as though there are
no constraints.

source:
http://www.programmableweb.com/news/introduction-to-api-
first-design/analysis/2016/10/31



Traditional API Design

* API design happens after the

release of some a data-rich REST API
application Design =
* Existing application “wrapped” in N
AP R sl R
GET /(asks/{»id} - display aw(ask by ID - ?data
* Created as an afterthought. TR ket L
* Tightly bound application needs =CIient

data/function exposed as API.

* Shoe-horned in as a separate
entity.



Advantages of Web APIs

e Suits multi-device environment of
today.

* An API layer can serve multiple

channels/devices. * *
* Mobile/tablet/loT device
e Scalable, modular, cohesive and
composeable -.: @ :._
* If designed properly!(e.g. -
microservice/Rest architecture) ‘ *

* Concentrate on function first rather
than data




APls in the Internet of
Things

* Many new loT devices emerging.

* Devices are limited on their own
* Accompanying APIs invite innovation and generate g J
value
* "Build a better mousetrap, and the world will beat a
path to your door" - Ralph Waldo Emerson
* e.g. Rentokil believe they have using APls

* Rentokil increased operational efficiency and
compliance through the automatic notifications of
a caught animal and its size.

e Core to this are web APIs.




HTTP Web APl on an
loT devices

* Easy to set up a Web server on a
Raspberry Pi(or smaller device):

* Connects sensors/actuators to
web

* Access and Control your devices
via the Web:

* Web application program
interface(Web API)




Demo

GET /temperature HTTP/1.1

Client

HTTP/1.1 200 OK

{"temperature":22.45} Server



