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Virtual Memory

Virtual Memory is a memory management technique that is implemented using both hardware
(MMU) and software (operating system). It abstracts from the real memory available on a
system by introducing the concept of virtual address space, which allows each process
thinking of physical memory as a contiguous address space (or collection of contiguous

segments).

Overview

Virtual memory allows the end-user to run and store more number of applications than the
physical memory can support. Computers have a finite amount of memory. Hence, the space
is more likely to run out when the customer tries to run multiple programs at the same time. A
system having virtual memory can load multiple programs at a time, without any need for
purchasing more RAM. In order to access virtual memory, the operating system first divides
the memory into page files. These files have their own fixed addresses. Every page file is stored
on the disk and whenever the particular page is required, the operating system copies it from

the disk to the physical memory and translates its virtual address into a real address.
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Goals

The goal of virtual memory is to map virtual memory addresses generated by an executing

program into physical addresses in computer memory.

This concerns two main aspects:

1. address translation (from virtual to physical) and

2. virtual address spaces management.

1. Address Translation as we have seen, is implemented on the CPU chip by a specific

hardware element called Memory Management Unit(MMU)

Virtual address spaces management is instead provided by the operating system,
which sets up virtual address spaces (i.e., either a single virtual space for all processes
or one for each process) and actually assigns real memory to virtual memory.
Furthermore, software within the operating system may provide a virtual address space
that can exceed the actual capacity of main memory (i.e., using also secondary memory)

and thus reference more memory than is physically present in the system.

The primary benefits of virtual memory include

freeing applications (and programmers) from having to manage a shared memory space,
increasing security due to memory isolation, and
being able to conceptually use more memory than might be physically available, using

the technique of paging.

Indeed, almost every virtual memory implementations divide a virtual address space into

blocks of contiguous virtual memory addresses, called pages, which are usually 4-8 KB in

size.
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The default memory page size in most operating systems is 4 kilobytes (kb). For a 32-

bit operating system the maximum amount of memory is 4 GB, which equates to

1,048,576 ((1024*1024*1024*4)/4096) memory pages
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In order to translate virtual addresses of a process into physical memory addresses used by the
hardware to actually process instructions, the MMU makes use of so-called page table, i.e. a
data structure managed by the OS that store mappings between virtual and physical addresses.
The page table shows the frame location for each page of a process. Within the program, each

logical address consists of a page number and an offset within the page.

The processor (hardware) must know how to access the page able of the current process.
Presented with a logical address <page number, offset>, the processor uses the page table to

produce a physical address <frame number, offset>
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Figure 1 - Assignment of Processes to Free Frames




OS as a Memory Manager Caroline Cahill

Concretely, the MMU stores a cache of recently used mappings out of those stored in the whole
OS page table, which is called Translation Lookaside Buffer (TLB).

Figure 2 - Paging Address Translation describes the address translation task as discussed above
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Figure 2 - Paging Address Translation

Paging Address Translation for Virtual Memory

When a virtual address needs to be translated into a physical address, the MMU first searches
for it in the TLB cache (step 1. in the picture above).

If a match is found (i.e., TLB hit) then the physical address is returned and the computation

simply goes on (2.a.).

Conversely, if there is no match for the virtual address in the TLB cache (i.e., TLB miss), the

MMU searches for a match on the whole page table, i.e., page walk (2.b.).
If this match exists on the page table, this is accordingly written to the TLB cache (3.a.).

Thus, the address translation is restarted so that the MMU is able find a match on the
updated TLB (1 & 2.a.).

2


https://gabrieletolomei.files.wordpress.com/2013/10/mmu.jpg

OS as a Memory Manager Caroline Cahill

Unfortunately, page table lookup may fail due to two reasons. The first one is when there is no
valid translation for the specified virtual address (e.g., when the process tries to access an area
of memory which it cannot ask for). Otherwise, it may happen if the requested page is not
loaded in main memory at the moment (an opposite flag on the corresponding page table entry

indicates this situation).

In both cases, the control passes from the MMU (hardware) to the page supervisor (a software

component of the OS kernel).
In the first case, the page supervisor typically raises a segmentation fault exception (3.b.).

In the second case, instead, a page fault occurs (3.c.), which means the requested page has to

be retrieved from the secondary storage (i.e., disk) where it is currently stored.

Thus, the page supervisor accesses the disk, re-stores in main memory the page
corresponding to the virtual address that originated the page fault (4.), updates the page table
and the TLB with a new mapping between the virtual address and the physical address where
the page has been stored (3.a.), and finally tells the MMU to start again the request so that a
TLB hit will take place (1 & 2.a.).

As it turns out, the task of above works until there is enough room in main memory to store

pages back from disk.

However, when all the physical memory is exhausted, the page supervisor must also free a page

in main memory to allow the incoming page from disk to be stored.

To fairly determine which page to move from main memory to disk, the paging supervisor may
use several page replacement algorithms, such as Least Recently Used (LRU). Generally
speaking, moving pages from/to secondary storage to/from main memory is referred to as

swapping, and this is why page faults may occur.
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This does not mean the kernel uses that much physical memory. Instead, this is just the portion

of virtual address space available to map whatever physical memory the OS kernel wishes.
Note also that in Linux, kernel space is constantly present and maps the same physical memory
in all processes, meaning that kernel space doesn’t change and is mapped to same physical

memory addresses across any process context switch.

The actual mapping of virtual addresses to physical memory addresses happens exactly as
discussed above through a combination of hardware (i.e., MMU) and software (i.e., OS page

supervisor).

Suppose the system X has 512 MB of physical memory, then only those 512 MB out
of the entire 1 GB virtual space will be mapped for kernel address space, leaving the
remaining 512 MB of virtual addresses unmapped. On the other hand, if X has 2 GB of
physical memory, the entire 1 GB of virtual addresses will be mapped to physical

addresses.

Having virtual memory could allow OS kernel pages to partly reside on secondary storage (i.e.,
disk) if the whole kernel does not fit to physical memory. In practice, this doesn’t happen (at
least on Linux) since most recent Linux kernels need approximately only 70 MB, which is

significantly below the amount of physical memory nowadays available on modern systems.

Moreover, the kernel has data and code that must be kept always in main memory for efficiency

reasons, and also because a page fault could not be handled otherwise.

Think about what we discussed above when a page fault happens: the OS kernel
(actually the OS page supervisor) takes the control of the system, enters a specific
Interrupt Service Routine (ISR) to handle the page fault, and gives back the control
to the user process that generated the page fault. If the OS kernel was not fit entirely
into main memory, it might happen that the kernel itself generates a page fault. In a
very bad case, such page fault could, for instance, concern the page with the code for

the page fault handling routine, thereby blocking the whole system! That’s why kernel
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code and data are always addressable (i.e., it never generates a page fault), and ready to

handle interrupts or system calls at any time.

In Summary

One of the most important and complex tasks of an OS is memory management. Memory
management involves treating main memory as a resource to be allocated to and shared among
a number of active processes. To use the processor and the 10 facilities efficiently, as many
processes should be in main memory as possible and also, the programmer should be free from

size restrictions for program development.

Partitioning has been replaced by virtual memory techniques.

Paging and segmentation are the two basic tools where with paging, the processes are divided
into relatively small, fixed size pages and with segmentation, varying sizes can be used. Both
paging and segmentation can be combined into one Paged Segmentation memory management

scheme.

When memory management goes wrong, in Windows for example, the system will start

showing the blue-screen-of-death at regular intervals.

Memory management essentially tracks every memory location on your system, regardless of
status. It manages the transition of memory and processes between your RAM and physical
memory during execution, deciding how much memory to allocate (and how much is available
for allocation). When you close a program, it reallocates that memory to other processes or

marks it available for use.
There are several well-known causes for memory management errors:

- Faulty RAM

- Issues with new hardware, such as a graphics card

- Faulty drivers

- Software issues, including corrupt system and operating system files

- Disk errors
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Say you get a critical memory management error, fingers crossed your system might recover

after a simple reset. Or maybe you can:

- Ensure your system OS is up to date
- Run a Memory Diagnostic Tool

- Check your drivers are up to date

- Check Physical Hardware

But here’s hoping your OS will stay as reliable as we’ve come to expect!
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