

Week 12 - Computer Systems

Caroline Cahill

Some of what we've Covered:

- Calculate operations using various number bases
- Apply the basics of Boolean Logic
- Be able to describe how the computer components operate together: understanding of a simulator
- discuss the relative merits of various operating systems
- compare and contrast CPU scheduling algorithms
- explain the following: process, address space, file.
- distinguish between the various memory computers use

Linux distro - Ubuntu

- user-friendly
- Free
- Safe
- High customisation
- Lots of Ubuntu flavours
- Supportive Ubuntu community
- Low system requirements
- Lots of free software
- Improved compatibility, included drivers
- It's open source

Computing Basics

- Decimal ${ }_{10}$
- Binary ${ }_{2}$
- Octal ${ }_{8}$
- Hexadecimal ${ }_{16}$
- Signed Number Representations

TIPS:
dec \rightarrow oct groups of 3 (recall $111_{2}=2^{2}+2^{1}+2^{0}=7$; Decimal 0-7) dec \rightarrow hex groups of 4 (recall $1111_{2}=2^{3}+2^{2}+2^{1}+2^{0}=15$; Decimal 0-15)

- Signed numbers usually 2's Complement:
- 1's Complement + 1
- Take note of how many bits is n ? $n=4$? $n=8$?

1's Complement:

- If x is positive, simply convert x to binary.
- If x is negative, write the positive value of x in binary
- Reverse each bit.

2's Complement:

- Last, we add 1 to the 1's Complement number

Binary Arithmetic

Tutorial Video

http://courses.cs.vt.edu/~csonline/NumberSystems/Lessons/AddingTw oBinaryNumbers/index.html

Logic

What would be a suitable gate to represent the following situation:

1. "Allow more people enter if the lights are on and there are empty seats"
2. "I buy shoes that are comfortable or cheap"

Distributive law

$$
X+(Y \cdot Z)=(X+Y) \cdot(X+Z)
$$

XYZ	Y.Z	$X+(Y . Z)$	$X+Y$	X + Z	$(X+Y) \cdot(X+Z)$
000	0	0	0	0	0
001	0	0	0	1	0
010	0	0	1	0	0
011	1	1	1	1	1
100	0	1	1	1	1
101	0	1	1	1	1
110	0	1	1	1	1
111	1	1	1	1	1

Proof by perfect induction

Exclusive OR

- When B is 1
output is complement of A

Boolean Algebra

1) $x \cdot 0=0$
2) $x \cdot 1=x$
3) $x \cdot x=x$
4) $x \cdot \bar{x}=0$
5) $x+0=x$
6) $X+1=1$
7) $x+x=x$
8) $x+\bar{x}=1$
9) $\bar{x}=x$

$$
\begin{gathered}
(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C}) \\
\mathrm{AA}+\mathrm{AC}+\mathrm{AB}+\mathrm{BC} \\
\mathrm{~A}+\mathrm{AC}+\mathrm{AB}+\mathrm{BC} \\
\mathrm{~A}+\mathrm{AB}+\mathrm{BClying} \text { identity } \mathrm{AA}=\mathrm{A} \\
\text { Applying rule } \mathrm{A}+\mathrm{AB}=\mathbf{A} \\
\text { to the } \mathrm{A}+\mathrm{AC} \text { term }
\end{gathered}
$$

DeMorgans Theorem

Law/Theorem	Law of Addition	Law of Multiplication
Identity Law	$\mathrm{x}+0=\mathrm{x}$	$\mathrm{x} \cdot 1=\mathrm{x}$
Complement Law	$\mathrm{x}+\mathrm{x}^{\prime}=1$	$\mathrm{x} \cdot \mathrm{x}^{\prime}=0$
Idempotent Law	$\mathrm{x}+\mathrm{x}=\mathrm{x}$	$\mathrm{x} \cdot \mathrm{x}=\mathrm{x}$
Dominant Law	$\mathrm{x}+1=1$	$\mathrm{x} \cdot 0=0$
Involution Law	$\left(\mathrm{x}^{\prime}\right)^{\prime}=\mathrm{x}$	
Commutative Law	$\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$	$\mathrm{x} \cdot \mathrm{y}=\mathrm{y} \cdot \mathrm{x}$
Associative Law	$\mathrm{x}+(\mathrm{y}+\mathrm{z})=(\mathrm{x}+\mathrm{y})+\mathrm{z}$	$\mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}$
Distributive Law	$\mathrm{x} \cdot(\mathrm{y}+\mathrm{z})=\mathrm{x} \cdot \mathrm{y}+\mathrm{x} \cdot \mathrm{z}$	$\mathrm{x}+\mathrm{y} \cdot \mathrm{z}=(\mathrm{x}+\mathrm{y}) \cdot(\mathrm{x}+\mathrm{z})$
Demorgan's Law	$(\mathrm{x}+\mathrm{y})^{\prime}=\mathrm{x}^{\prime} \cdot \mathrm{y}^{\prime}$	$(\mathrm{x} \cdot \mathrm{y})^{\prime}=\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$
Absorption Law	$\mathrm{x}+(\mathrm{x} \cdot \mathrm{y})=\mathrm{x}$	$\mathrm{x} \cdot(\mathrm{x}+\mathrm{y})=\mathrm{x}$

Simplification of Boolean Expressions

$$
\begin{aligned}
(X+Y)(X+\bar{Y})(\bar{X}+Z) & \\
& \text { Multiply out the first two terms } \\
& =(X X+X \bar{Y}+X Y+Y \bar{Y})(\bar{X}+Z) \\
& =(X+X+F)(\bar{X}+Z) \\
& =\quad(\bar{X}+Z) \\
& =X \bar{X}+X Z \\
& =X Z
\end{aligned}
$$

Week 6: K-maps

RULES:

- No O's
- Never diagonal
- Groups of 2^{n}

- Large group as possible
- Groups can overlap
- Groups can wrap around edges
- Few groups as possible

Real world application in error codes

Week 7: Flip-flop

- In RAM, each location stores a word
- In SRAM, the memory cell is a type of flip-flop circuit

Types:

- S-R
- D-Type Flip-Flop circuit that is usually built using NAND logic gates
- Edge-triggered

