Week 12 — Operating Systems

Caroline Cahill

fo) _i ¢
B
Wieterlond Institte of Tecnology

Week 8: Operating Systems

Burm disk?

Batch processing

L
. Electricity

Multi-programming Real-time processing

Interactive processing

Multi-access or multi user

The OS needs to be able to respond to events

e System Calls — User
application return from mode
syscall interrupt
* Exceptions
» detected by t Kernel
transfer to mode
interrupt
handler
* Interrupts .
* similar to exceptions. Caused by | D
program
— Y

OS Functions/Responsibilities/Duties

- Input/output
ﬂpﬂ?nng control
‘ system |

Memory Resource
User management allocation
nlerlee ,
Operating
system
functions
Memary Process Device File Error : File
manager manager AnAger manager reporting management

Processor
management

Process management by an OS

ii.

111

1v.

A program 1s a non-active, passive collection of mstructions stored on disk

A program becomes a job from the moment it 15 selected for execution until 1t has
finished running and becomes a program again.

A process 1s a program in execution. It 15 a program that has started but has not finished.
A process has one or more threads, along with their execution state. A process 1s the
actual execution of program instructions

Thread: Executes a series of instructions in order (only one thing happens at a time).
A thread 1s a flow of execution through the process code, with its own program counter
that keeps track of which instruction to execute next, system registers which hold 1ts

current working variables, and a stack which contains the execution history

Job and Process Schedulers

‘ Job scheduler \

......................

Process

ooo

——
e]

Process
Scheduler

C Schedules

PCB

Pointer

.-\a t)./;\.;-:,. -.‘.':_-E
{?(‘:Lﬁirc)qn' 'c::' .».,

i d

¥

wnm idlnm‘.n;u:y‘c ology
LI s

States of a Process

admitted

interrupt exit terminated

/0 or event wait

Unix Process Control

— | The fork syscall returns a zero
/ to the child and the child
/ process ID to the parent.

int pid; / |
it stagus=0: e
if (pid=fork()T

f* parent */

I-:!-i.:i= wait(&status):; il
} else {

/* child */

™

Fork creates an exact copy
of the parent process.

Parent uses wail to sleep until
the child exits' wait retuirms

child pid and status.

Wait variants allow wait ona
specific child, or notification
of stops and other signals.

Child process passes status
back to parent on exit, to
repoit success/failure.

Fork/Exit/Wait

fork parent — : —
| Ciuld process starts as clone of
- parent: increment refcounts on

/ shared resources.

e Parent and chuld execute
= ndependently: meniory states
/ and resowrces may diverge.

e On extt, release memory
and decrement refcounts
on shared resowrces,

Parent sleeps in wait
until child stops or exits. —~

Child enters zombie state: process is
dead and most resowrces are eieased,
but process descriptor remans until

— Darent reqps exit status via wail.

Fork/Exec/Exit/Wait

Jork parent

initialize
child conrext exec

wait

Sfork child

int pid = fork():
Create a new process that is a clone of
its parent.

exec*(“program™ [, argvp, envp]):
Overlav the calling process virtual
memory with a new program, and
transfer control 1o it.

exit(status):
Exitwith status, destroving the process.

int pid = wait*(&status):
Wait for exit (or other status change) of
a child.

CPU Scheduling Techniques

* Preemptive Scheduling Techniques

* the low level scheduler can remove a process from the RUNNING state in
order to allow another process to run

* SRT
* Round Robin (RR)

* Non-preemptive Scheduling Techniques

* "run to completion” technique
* FCFS Scheduling.
* SIJN Scheduling.

* Priority Scheduling

?.‘iji:l«
Witerlerd Insui. te.of Tecanology

Memory Management

* transferring programs into and out of memory,

* allocating free space between programs,

* keeps track of each and every memory location,

* Check how much memory is to be allocated to processes.
* decides which process will get memory at what time

* tracks whenever some memory gets freed or unallocated
e updates the status.

Memory Management

* Swapping

* Paging, page tables and TLB
* Partitions

* Segmentation

* Virtual memory

Input/Output Device Management

* Efficiency is paramount, as is
* Generality

* The need for a human to input information and receive output from a
computer.

* The need for a device to input information and receive output from a
computer.

* The need for computers to communicate (receive/send information)
over networks.

?.‘iji:l«
Witerlerd Insui. te.of Tecanology

Modes of Data Transfer

* Consider device characteristics, synchronisation and reliability

3 main techniques for performing 1/0:

1. Programmed I/O

2. Interrupt Driven I/O and
3. Direct Memory Access I/0O
4. Polling I/O

/O Organisation
L=—_ 1§ E==—— B

S
TORIARA AR C AT RO
el rhiecene

heduling «-&llng

& Conmvol &N Control

Improving Disk I/0 Performance:

Disk Scheduling Techniques Disk Cache
* FIFO Disk Scheduling * a buffer in main memory for disk
* Priority sectors
e LIFO e contains a copy of some of the
* SSTF (Shortest Service Time sectors on the disk
First) e Cache Replacement Policies

* SCAN * LRU

* C-SCAN e LFU

* N-step-SCAN * Freg-Based

* FSCAN

* LRU disk performance

= .

BT T

From Caroclhine

|
|

