
Logical Database Design 1

Watch video: https://youtu.be/gcYKGV-QKB0?t=32m00s

https://youtu.be/gcYKGV-QKB0?t=32m00s
https://youtu.be/gcYKGV-QKB0?t=32m00s
https://youtu.be/gcYKGV-QKB0?t=32m00s
https://youtu.be/gcYKGV-QKB0?t=32m00s

Topics List

• Logical Database Design for the Relational Model

• Build and Validate Logical Data Model

• Derive relations for logical data model

Logical Database Design for the Relational Model

• The purpose of logical design is to translate the

conceptual representation to the logical structure of the

database, which includes designing the relations.

• Logical design is the process of constructing a model of

the data used in an enterprise based on a specific data

model (in our case relational), but independent of a

particular DBMS and other physical considerations.

Logical Database Design for the Relational Model

• Logical design is a semiphysical realisation of the concepts.
We say semiphysical because we are really not concerned
with the actual physical file that is stored in memory; rather,
we are concerned with placing data into relational tables that
we will visualise as a physical organisation of data.

• Recall, a relational database is a database of two-
dimensional tables called relations. The tables are
composed of rows (tuples) and columns (attributes). In a
relational database, all attributes must be atomic (simple),
and keys must be not null.

• The process of converting an ER diagram into a database is
called mapping.

Logical Database Design for the Relational Model

• Recall the Overview Database Design Methodology:

• Step 1 Build conceptual data model.

• Step 2 Build and validate logical data model.

• Step 3 Translate logical data model for target DBMS.

• Step 4 Design file organisations and indexes.

• Step 5 Design user views.

• Step 6 Design security mechanisms.

• Step 7 Consider the introduction of controlled

redundancy.

• Step 8 Monitor and tune the operational system.

Logical Database Design for the Relational Model
Build and Validate Logical Data Model

• Translate the conceptual data model into a logical data
model and then validate this model to check that it is
structurally correct using normalisation and supports the
required transactions.

• Step 2.1 Derive relations for logical data model.

• Step 2.2 Validate relations using normalisation.

• Step 2.3 Validate relations against user transactions.

• Step 2.4 Define integrity constraints.

• Step 2.5 Review logical data model with user.

• Step 2.6 Merge logical data models into global model
(optional step).

• Step 2.7 Check for future growth.

Topics List

• Logical Database Design for the Relational Model

• Build and Validate Logical Data Model

• Derive relations for logical data model

Build and Validate Logical Data Model

• In this step, we create relations for the logical data

model that will represent the entities, relationships, and

attributes that have been identified.

• We will look at:

• How to represent entity types (and attributes)

• How to represent relationship types (and attributes

(if any))

Topics List

• Logical Database Design for the Relational Model

• Build and Validate Logical Data Model

• Derive relations for logical data model

Derive relations for logical data model
How to represent entity types

• For each strong entity in the data model:

• Create a relation that includes all the atomic (simple)

single valued attributes of that entity.

• For composite attributes, include only the constituent

simple attributes.

• Make the indicated primary key of the strong entity

type the primary key of the table.

• If the entity type has multi valued attribute(s), do not

include them. (We will look at how to represent them

later).

Derive relations for logical data model
How to represent entity types

• Example:

• We have a Vet Entity with the following attributes:

simple attribute PPS; composite attribute name

(made up of fName and lName), and simple attribute

salary. PPS is the primary key field.

Derive relations for logical data model
How to represent entity types

• The resulting relation is as follows:

Vet(PPS, fName, lName, salary)

Primary key PPS

• Notes:

• The name of the entity type (Vet) becomes the name

of the relation.

• The composite attribute name is not included in the

relation, only its constituent attributes are included.

• The primary key of the entity type is the primary key

of the relation.

Derive relations for logical data model
How to represent relationship types

• We will use the primary key/foreign key mechanism (i.e.

copy the primary key attribute from one entity type (on

one side of the relationship) into another entity type as

a foreign key (on the other side of the relationship)).

• In deciding where to post (or copy) the foreign key

attribute(s), we must first identify the ‘parent’ and ‘child’

entities involved in the relationship. The parent entity

refers to the entity that posts a copy of its primary key

into the table that represents the child entity, to act as

the foreign key.

Derive relations for logical data model
How to represent relationship types

• Depending on the cardinality of the relationship and

subsequently the participation, we consider how to

represent the following relationships:

• Binary relationships:

• one-to-many (1:*);

• many-to-many (*:*)

• one-to-one (1:1);

Derive relations for logical data model
How to represent relationship types

one-to-many (1:*)

The entity on the ‘one side’ of the relationship is designated as
the parent entity and the entity on the ‘many side’ is
designated as the child entity.

• To represent this relationship, post a copy of the primary
key attribute(s) of the parent entity (one side) into the
relation representing the child entity (many side), to act
as a foreign key.

• If the relationship has one or more attributes, these attributes
should follow the posting of the primary key to the child
relation.

Derive relations for logical data model
How to represent relationship types

one-to-many (1:*)

Derive relations for logical data model
How to represent relationship types

one-to-many (1:*)

• In the above example, branchNo is added as an extra

attribute in the Staff relation. It is a foreign key which

means it will draw its’ value from branchNo in the

Branch relation.

Derive relations for logical data model
How to represent relationship types

• Exercise

• Transform the following ER diagram into a set of

relations

Derive relations for logical data model
How to represent relationship types

• Exercise

Course(courseCode, courseTitle, courseLeader, duration,

 points)

Primary key courseCode

Student(studentId, fName, lName, street, town, county, year,

 courseCode)

Primary key studentId

Foreign key courseCode references Course(courseCode)

Derive relations for logical data model
How to represent relationship types

many-to-many (*:*)

• When a relationship is many-to-many, we cannot post from

one side to the other as we cannot post from the many side.

• Create a relation to represent the relationship and

include any attributes that are part of the relationship.

We post a copy of the primary key attribute(s) of the

entities that participate in the relationship into the new

relation, to act as foreign keys. These foreign keys will

also form the primary key of the new relation, possibly in

combination with some of the attributes of the relationship.

Derive relations for logical data model
How to represent relationship types

many-to-many (*:*)

Derive relations for logical data model
How to represent relationship types

many-to-many (*:*)

• In the above example, we create a new relation (Role)
to represent the relationship. Attributes catalogNo
(Primary key of Video) and actorNo (primary key of
Actor) are 2 attributes of this new relation. Both
attributes are foreign key values related back to their
respective relations (i.e. catalogNo draw its’ value from
catalogNo in the Video relation; and actorNo draw its’
value from actorNo in the Actor relation). There will be a
composite Primary key in the new relation (Role), the
key is catalogNo, actorNo.

Derive relations for logical data model
How to represent relationship types

• Exercise

• Transform the following ER diagram into a set of

relations

Derive relations for logical data model
How to represent relationship types

• Exercise
Student(studentId, fName, lName, street, town, county, year,

 courseCode)

Primary key studentId

Module(moduleCode, title, description, credits)

Primary key moduleCode

Studies(studentId, moduleCode)

Primary key studentId, moduleCode

Foreign key studentId references Student(studentId)

Foreign key moduleCode references Module(moduleCode)

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1)

• Creating relations to represent a 1:1 relationship is more
complex as the cardinality cannot be used to identify the
parent and child entities in a relationship. Instead, the
participation constraints are used to decide whether it is best
to represent the relationship by combining the entities
involved into one relation or by posting a copy of the primary
key from one relation to the other.

• Consider the following:
• mandatory participation on both sides of 1:1 relationship
• mandatory participation on one side of 1:1 relationship
• optional participation on both sides of 1:1 relationship

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on both sides

• One alternative is to post a copy of the primary key

attribute(s) from one side of the relationship to the

other side as a foreign key.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on both sides

• Option One:

Staff(staffNo, name, position, salary)

Primary Key staffNo

Car(regNo, make, model, staffNo)

Primary Key regNo

Foreign Key staffNo references Staff(staffNo)

• In this example, we post a copy of staffNo into the
Car relation as a foreign key field.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on both sides

• Option Two:

Car(regNo, make, model)

Primary Key regNo

Staff(staffNo, name, position, salary, regNo)

Primary Key staffNo

Foreign Key regNo references Car (regNo)

• In this example, we post a copy of regNo into the
Staff relation as a foreign key field.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on both sides

• Another alternative is to combine the entities

involved into one relation and choose one of the

primary keys of original entities to be primary key

of the new relation, while the other is used as an

alternate key.

Staff(staffNo, name, position, salary, regNo, make, model)

Primary Key staffNo

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on one side

• Identify parent and child entities using participation constraints.

Entity with optional participation in relationship is designated

as the parent entity, and entity with mandatory participation is

designated as the child entity.

• A copy of the primary key of the parent entity (entity with

optional participation) is placed in the relation

representing the child entity (entity with mandatory

participation). If the relationship has one or more attributes,

these attributes should follow the posting of the primary key to

the child relation.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) - Mandatory participation on one side

Staff(staffNo, name, position, salary)

Primary Key staffNo

Car(regNo, make, model, staffNo)

Primary Key regNo

Foreign Key staffNo references

Staff(staffNo)

In this example, we post a copy of

staffNo into the Car relation as a

foreign key field because the

participation of Staff in the relationship

is optional.

Derive relations for logical data model
How to represent relationship types

• Exercise

• Transform the following ER diagram into a set of

relations

Derive relations for logical data model
How to represent relationship types

• Exercise

Citizen(PPS, fName, lName, DOB)

Primary key PPS

Passport(passportId, expiryDate, PPS)

Primary key passportId

Foreign key PPS references Citizen(PPS)

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) – Optional participation on both sides

• One solution is to post from one side of the

relationship to the other side of the relationship.

Since both sides are ‘optional’ you look at the data

and post from the side with the most ‘optional’

participation to the other side.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) – Optional participation on both sides

Staff(staffNo, name, position, salary)

Primary Key staffNo

Car(regNo, make, model, staffNo)

Primary Key regNo

Foreign Key staffNo references

Staff(staffNo)

Assuming most of the Cars are

allocated and only a minority of Staff

uses a Car, we will post staffNo into

Car as a foreign key.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) – Optional participation on both sides

• Another alternative is to create a new relation. We post a

copy of the primary key attribute(s) of the entities that

participate in the relationship into the new relation, to act as

foreign keys.

Derive relations for logical data model
How to represent relationship types

one-to-one (1:1) – Optional participation on both sides

Staff(staffNo, name, position, salary)
Primary Key staffNo

Car(regNo, make, model)
Primary Key regNo

Drives(staffNo, regNo)
Primary Key staffNo
Foreign Key staffNo references Staff(staffNo)
Foreign Key regNo references Car(regNo)

staffNo or regNo is sufficient as the Primary Key field as each
entity only participates once in the relationship.

