
Transaction Management

Watch video: https://youtu.be/dH2avf3x4Xg?t=322

https://youtu.be/dH2avf3x4Xg?t=322
https://youtu.be/dH2avf3x4Xg?t=322

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Transaction (definition)

• Action, or series of actions, carried out by user or

application, which reads or updates contents of

database.

• Logical unit of work on the database.

• Transforms database from one consistent state to

another, although consistency may be violated during

transaction.

Example Transactions

Transaction Support

• Can have one of two outcomes:

• Success - transaction commits and database reaches a
new consistent state.

• Failure - transaction aborts, and database must be
restored to consistent state before it started.

• Such a transaction is rolled back or undone.

• Committed transaction cannot be aborted.

• Aborted transaction that is rolled back can be restarted later.

State Transition Diagram for Transaction

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

ACID Properties of Transactions

• Four basic (ACID) properties of a transaction are:

• Atomicity: ‘All or nothing’ property

• Consistency: Must transform database from one

consistent state to another

• Isolation: Partial effects of incomplete transactions

should not be visible to other transactions

• Durability: Effects of a committed transaction are

permanent and must not be lost because of later failure

ACID examples: atomicity

• Atomicity means all or nothing. Transactions often contain
multiple separate actions. For example, a transaction may
insert data into one table, delete from another table, and
update a third table. Atomicity ensures that either all of these
actions occur or none at all.

• An example of an atomic transaction is an account transfer
transaction. The money is removed from account A then
placed into account B. If the system fails after removing the
money from account A, then the transaction processing
system will put the money back into account A, thus
returning the system to its original state. This is known as a
rollback.

ACID examples: consistency

• Consistency means that transactions always take the
database from one consistent state to another. So, if a
transaction violates the databases consistency rules, then
the entire transaction will be rolled back.

• Looking again at the account transfer system, the system is
consistent if the total of all accounts is constant. If an error
occurs and the money is removed from account A and not
added to account B, then the total in all accounts would
have changed. The system would no longer be consistent.
By rolling back the removal from account A, the total will
again be what it should be, and the system back in a
consistent state.

ACID examples: isolation

• Isolation means that concurrent transactions, and the
changes made within them, are not visible to each other until
they complete. This avoids many problems, including those
that could lead to violation of other properties. The
implementation of isolation is quite different in different
DBMS. This is also the property most often related to locking
problems.

• For example, a teller looking up a balance must be isolated
from a concurrent transaction involving a withdrawal from
the same account. Only when the withdrawal transaction
commits successfully and the teller looks at the balance
again will the new balance be reported.

ACID examples: durability

• Durability means that committed transactions will not be

lost, even in the event of abnormal termination. That is,

once a user or program has been notified that a

transaction was committed, they can be certain that the

data will not be lost.

• A system crash or any other failure must not be allowed

to lose the results of a transaction or the contents of the

database. Durability is often achieved through separate

transaction logs that can "re-create" all transactions

from a certain point in time.

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Concurrency Control

• Process of managing simultaneous operations on the

database without having them interfere with one

another.

• Prevents interference when two or more users are

accessing database simultaneously and at least one is

updating data.

• Although two transactions may be correct in

themselves, interleaving of operations may produce an

incorrect result.

Need for Concurrency Control

• Three examples of potential problems caused by

concurrency:

• Lost update problem.

• Uncommitted dependency problem.

• Inconsistent analysis problem.

Lost Update Problem

• Successfully completed update is overridden by

another user.

• T1 withdrawing €10 from an account with balx, initially

€100.

• T2 depositing €100 into same account.

• Serially, final balance would be €190.

Lost Update Problem

• Loss of T2’s update could be avoided by preventing T1

from reading balx until after update.

Uncommitted Dependency Problem

• Occurs when one transaction can see intermediate

results of another transaction before it has committed.

• T4 updates balx to €200 but it aborts, so balx should be

back at original value of €100.

• T3 has read new value of balx (€200) and uses value as

basis of €10 reduction, giving a new balance of €190,

instead of €90.

Uncommitted Dependency Problem

• Problem could be avoided by preventing T3 from

reading balx until after T4 commits or aborts.

Inconsistent Analysis Problem

• Occurs when transaction reads several values but
second transaction updates some of them during
execution of first.

• Sometimes referred to as dirty read or unrepeatable
read.

• T6 is totaling balances of account x (€100), account y
(€50), and account z (€25).

• Meantime, T5 has transferred €10 from balx to balz, so
T6 now has wrong result (€10 too high).

Inconsistent Analysis Problem

• Problem could be avoided by preventing T6 from

reading balx and balz until after T5 completed updates.

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Serialisability

• Objective of a concurrency control protocol is to

schedule transactions in such a way as to avoid any

interference.

• Could run transactions serially, but this limits degree of

concurrency or parallelism in system.

• The goal of serialisability is to allow transactions to run

concurrently while still having the same results as if

they were run sequentially (i.e. separately, one after the

other)

Concurrency Control Techniques

• Two basic concurrency control techniques are:

• Locking

• Timestamping

• Both are conservative (pessimistic) approaches: delay
transactions in case they conflict with other transactions.

• Optimistic methods assume conflict is rare and only check
for conflicts at commit.

• Versioning

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Locking

• Transaction uses locks to deny access to other

transactions and so prevent incorrect updates.

• Most widely used approach to ensure serialisability.

• Generally, a transaction must claim a shared (read) or

exclusive (write) lock on a data item before read or

write.

• Lock prevents another transaction from modifying item

or even reading it, in the case of a write lock.

Locking - Basic Rules

• If transaction has shared lock on item, it can read but
not update item.

• If transaction has exclusive lock on item, it can both
read and update item.

• Reads cannot conflict, so more than one transaction
can hold shared locks simultaneously on same item.

• Exclusive lock gives transaction exclusive access to
that item (i.e. the item cannot even be read by other
transactions).

Locking - Basic Rules

• Some systems allow transaction to upgrade read lock

to an exclusive lock, or downgrade exclusive lock to a

shared lock.

Locking

• Locking does not allow guarantee serialisability

• In the example on the next slide, if the lock on balx is

released by T9 as soon as the update is completed,

T10 can proceed to read the value of balx

• However, this could cause inconsistencies if T9 was

later rolled back instead of committed

Example

Two-Phase Locking (2PL)

• Transaction follows 2PL protocol if all locking operations
precede first unlock operation in the transaction.

• In other words, all locks are held until the transaction ends
(either committed or rolled back)

• Two phases for transaction:

• Growing phase - acquires all locks but cannot release any
locks.

• Shrinking phase - releases locks but cannot acquire any
new locks.

Preventing Lost Update Problem using 2PL

Preventing Uncommitted Dependency Problem

using 2PL

Preventing Inconsistent Analysis Problem using

2PL

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Deadlock

• An impasse that may result when two (or more)

transactions are each waiting for locks held by the other

to be released.

Deadlock

• Only one way to break deadlock: abort one or more of the
transactions.

• Deadlock should be transparent to user, so DBMS should
restart transaction(s).

• Three general techniques for handling deadlock:

• Timeouts.

• Deadlock prevention.

• Deadlock detection and recovery.

Timeouts

• Transaction that requests lock will only wait for a

system-defined period of time.

• If lock has not been granted within this period, lock

request times out.

• In this case, DBMS assumes transaction may be

deadlocked, even though it may not be, and it aborts

and automatically restarts the transaction.

Deadlock Prevention

• DBMS looks ahead to see if transaction would cause
deadlock and never allows deadlock to occur.

• Could order transactions using transaction timestamps:

• Wait-Die: only an older transaction can wait for
younger one, otherwise transaction is aborted (dies)
and restarted with same timestamp.

• Wound-Wait: only a younger transaction can wait for
an older one. If older transaction requests lock held
by younger one, younger one is aborted (wounded).

Wait-die vs. Wound-wait

Wait-Die Wound-Wait

O needs

resource held by

Y

O waits Y dies

Y needs resource

held by O

Y dies Y waits

O = Older transaction

Y = Younger transaction

Deadlock Detection and Recovery

• DBMS allows deadlock to occur but recognizes it and breaks
it.

• Usually handled by construction of wait-for graph (WFG)
showing transaction dependencies:

• Create a node for each transaction.

• Create edge Ti -> Tj, if Ti waiting to lock item locked by Tj.

• Deadlock exists if and only if WFG contains cycle.

• WFG is created at regular intervals.

Example - Wait-For-Graph (WFG)

Recovery from Deadlock Detection

• Several issues:

• choice of deadlock victim;

• how far to roll a transaction back;

• avoiding starvation.

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Timestamping

• Transactions ordered globally so that older

transactions, transactions with smaller timestamps, get

priority in the event of conflict.

• Conflict is resolved by rolling back and restarting

transaction.

• No locks so no deadlock.

Timestamping

• Timestamp

• A unique identifier created by DBMS that indicates

relative starting time of a transaction.

• Can be generated by using system clock at time

transaction started, or by incrementing a logical counter

every time a new transaction starts.

Timestamping

• Read/write proceeds only if last read/write on that data item
was carried out by an older transaction.

• Otherwise, transaction requesting read/write is restarted and
given a new timestamp.

• Also timestamps for data items:

• read-timestamp - timestamp of last transaction to read
item;

• write-timestamp - timestamp of last transaction to write
item.

Timestamping example

John Time Marsha Balx Data Item Timestamp

read (balx) t1 100 Last read by John (Older) at t1

 t2 read (balx) 100 Last read by Marsha (Newer) at t2

balx = balx - 50 t3 50

write (balx) * t4 50

roll back t5 balx = balx – 10 90

 t6 write (balx) 90 Last updated by Marsha (Older) at t6

read (balx) t7 90 Last read by John (Newer) at t7

 t8 90

balx = balx - 50 t9 40

write (balx) ** t10 40 Last update by John (Newer) at t10

 t11

 t12

Timestamping example

* Problem occurs here – John (the ‘older’ transaction)
has tried to update a data item which was last read by a
‘newer’ transaction (Marsha). Therefore his transaction
must be rolled back - aborted and restarted, and given
a new timestamp. From time t6 and onwards Marsha
is now the older transaction, whereas John’s
transaction is the newer of the two (having been
given a new timestamp).

** This time John’s update to the balance is allowed to
proceed, as the data item has not been read/updated
by anyone else since his transaction was restarted.

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Versioning

• Versioning of data can be used to increase concurrency.

• Basic timestamp ordering protocol assumes only one
version of data item exists, and so only one transaction can
access data item at a time.

• Can allow multiple transactions to read and write different
versions of same data item.

• In multiversion concurrency control, each write operation
creates new version of data item while retaining old version.

• New versions are later merged into the database; conflicts
are dealt with if they arise

Optimistic Techniques

• Based on assumption that conflict is rare and more
efficient to let transactions proceed without delays to
ensure serialisability.

• At commit, check is made to determine whether conflict
has occurred.

• If there is a conflict, transaction must be rolled back
and restarted.

• Potentially allows greater concurrency than traditional
protocols.

Agenda

• Function and importance of transactions.

• Properties of transactions.

• Concurrency Control

• Meaning of serialisability.

• How locking can ensure serialisability.

• Deadlock and how it can be resolved.

• How timestamping can ensure serialisability.

• Optimistic concurrency control.

• Granularity of locking.

Granularity of Data Items

• Size of data items chosen as unit of protection by
concurrency control protocol.

• Ranging from coarse to fine:

• The entire database.

• A file.

• A page (or area or database spaced).

• A record.

• A field value of a record.

Granularity of Data Items

• Tradeoff:

• coarser, the lower the degree of concurrency;

• finer, more locking information that is needed to be

stored.

• Best item size depends on the types of transactions.

Levels of Locking

