Developer Operations

Python Overview 1.
Getting Started

A

Credits: parts extracted from presentations by Moshe Goldstein and Michael DiRamio

Presentation Overview

Running Python

Variables
Basic data types

Control flow

Installation / set-up

* Python 3 comes with most Linux distributions and can
be easily installed on Mac OS X

» Just open a terminal window and type “python3”
* You'll get a prompt like this:
>>>

jmcgibney@demo: ~

:~$ python3
Python 3.5.2 (default, Nov 12 2018, 13:43:14)
[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.
- -

Installation / set-up

« Can get Windows version, but better to run Python on
Linux (in a virtual machine is fine). Mac is also fine.

* Choose Python 3 rather than Python 2

Latest stable version is 3.7.2 (at time of writing) but any recent
version should be ok.

Python 3 comes preinstalled on many Linux distributions. The
command is python3

$ python3

For Amazon Linux, Python 3 first needs to be installed
$ sudo yum install python37
$ python3

Official documentation

https://docs.python.org/3/

® © ® A 372Documentation x +

@ Python » [English +|[3.7.2

% | Documentation »

Download

Download these documents

Docs by version

Python 3.8 (in
development)

Python 3.7 (stable)

Python 3.6 (stable)

Python 3.5 (security-fixes)
Python 2.7 (stable)

All versions

Other resources

PEP Index
Beginner's Guide
Book List
Audio/Visual Talks

& C {)} @& Python Software Foundation [US | https://docs.python.org/3/ a &% & Y9 o

[Quick search || Go|| modules | index

Python 3.7.2 documentation

Welcome! This is the documentation for Python 3.7.2.

Parts of the documentation:

What's new in Python 3.7?

or all "What's new" documents since 2.0

Tutorial
start here

Library Reference
keep this under your pillow

Language Reference
describes syntax and language elements

Python Setup and Usage

Installing Python Modules
installing from the Python Package Index &
other sources

Distributing Python Modules

publishing modules for installation by others

Extending and Embedding

tutorial for C/C++ programmers

Python/C API

reference for C/C++ programmers

Official documentation — tutorial

https://docs.python.org/3/tutorial

® © ® A ThePython Tutorial —Python X 4+

— C () @& Python Software Foundation [US | https://docs.python.org/3/tutorial/ a %+ & Y9 o

@ Python » [english][3.7.2 +| Documentation » |Quick search || Go| | previous | next | modules | index

The Python Tutorial §

Previous topic

Changelo
e Python is an easy to learn, powerful programming language. It has efficient high-level data
Next topic structures and a simple but effective approach to object-oriented programming. Python's el-
1. Whetting Your Appetite egant syntax and dynamic typing, together with its interpreted nature, make it an ideal lan-
guage for scripting and rapid application development in many areas on most platforms.
This Page

The Python interpreter and the extensive standard library are freely available in source or bin-
ary form for all major platforms from the Python Web site, https://www.python.org/, and may

« be freely distributed. The same site also contains distributions of and pointers to many free
third party Python modules, programs and tools, and additional documentation.

Report a Bug
Show Source

The Python interpreter is easily extended with new functions and data types implemented in C
or C++ (or other languages callable from C). Python is also suitable as an extension language
for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python
language and system. It helps to have a Python interpreter handy for hands-on experience, but
all examples are self-contained, so the tutorial can be read off-line as well.

Official documentation — reference

https://docs.python.org/3/reference

® © ® A ThePythonLanguage Referen X 4

& C {} @& Python Software Foundation [US | https://docs.python.org/3/reference/ a &+ & Y9 o

@ Python » [English][3.72 %+ | Documentation » [Quick search || Go| | previous | next | modules | index

The Python Language Reference

Previous topic
4. Using Python on a

Macintosh This reference manual describes the syntax and “core semantics” of the language. It is terse,
but attempts to be exact and complete. The semantics of non-essential built-in object types
Next topic and of the built-in functions and modules are described in The Python Standard Library. For an
1. Introduction informal introduction to the language, see The Python Tutorial. For C or C++ programmers,
two additional manuals exist: Extending and Embedding the Python Interpreter describes the
This Page high-level picture of how to write a Python extension module, and the Python/C API Reference
Report a Bug Manual describes the interfaces available to C/C++ programmers in detail.
Show Source s

* 1. Introduction
o 1.1. Alternate Implementations
o 1.2. Notation

e 2. Lexical analysis
o 2.1. Line structure

. Other tokens

. Identifiers and keywords

. Literals

. Operators

. Delimiters

o 0 0 0 O
N NN NN
(o) IV, IS - WL N]

Google's Python class - recommended

00 ¢y Google's Python Class | Pyth X +

C () & https://developers.google.com/edu/python/ Q % B Y9 o
Google for Education > Python Q. Search e
Python Course Googlels PYthOﬂ CIaSS
Overview
Python Set Up Welcome to Google's Python Class - this is a free class for people
Introduction with a little bit of programming experience who want to learn Python.
Strings The class includes written materials, lecture videos, and lots of code
Lists exercises to practice Python coding. These materials are used within
Sorting Google to introduce Python to people who have just a little
Dicts and Files programming experience. The first exercises work on basic Python
Regular Expressions concepts like strings and lists, building up to the later exercises
Utilities which are full programs dealing with text files, processes, and http
Lecture Videos day1, day2 connections. The class is geared for people who have a little bit of
Python Exercises programming experience in some language, enough to know what a

"variable" or "if statement" is. Beyond that, you do not need to be an

N

Google's Python class

 Available at:
https://developers.google.com/edu/python/

* Very suitable for this module because:
It covers almost exactly the areas that we need

It is pitched at the right level (assumes a little programming
already)

» Good exercises are included (with built-in tests of correct
completion
 However there is one drawback:
 Itis based on Python 2 rather than Python 3

* For this reason we have created a Python 3 version of the
exercises — see labs.

The Python Interpreter

* Python is an interpreted >>> 3 + 7
language 10

« The interpreter provides an >>> 3 < 13

interactive environment to

play with the language >>> 'print me'’
'print me'

True

» Really useful for trying out

syntax >>> print ('print me')

_ print me
* Results of expressions are

printed on the screen

>>>

10

Interactive Python — Hello World

« At the Python >>> prompt, type 'Hello world!'

///g:::>'Hello world!'
Hello world!

* Or alternatively:

Interactive
Python
prompt

>>> print ('Hello world!')
Hello world!

Or put it in a script/program

... to make your code reusable

« Use an editor to create a file called helloworld.py and
type in a line of code containing the call to print()

‘//J) nano helloworld.py

L inux (enter code: print ("Hello world!’))

prompt $ cat helloworld.py
print ('Hello world!")

$ python3 helloworld.py
Hello world!

12

The print Statement

* Elements separated by commas print with a space
between them

>>> print ('Hello')

Hello

>>> print ('Hello', 'there')
Hello there

>>>

13

Comments

starts a comment

print ('This will print') # comment here
#fprint ('This will not')

Variables

e Variables are not declared, just assigned

* The variable is created the first time you assign it
a value

* Variables are references to objects

* Type information is with the object, not the
reference

* Everything in Python is an object

15

All variables are objects

* Everything is an
object

« Data typeis a
property of the object
and not of the
variable

>>> x = 7

>>> print (x)

7

>>> x = 'Hello'
>>> print (x)
'"Hello'

>>>

16

Numbers

« Python has integers,
long integers and
floating point numbers
(plus others types like
complex numbers)

>>> 132224

132224

>>> 132323 ** 4
306578259430545516241
>>> 1.23232

1.23232

>>> print (1.23232)
1.23232

>>> 1.3E7

13000000.0
>>>

17

String Literals

o Strings are immutable
— I.e. they can't be changed
— we just create a new string when we carry out an
operation

e + |s overloaded to do concatenation

>>> x = 'hello' L
Here a new string is created

and assigned to variable x

>>> x = x + ' there' <
>>> print (x)

'hello there'

>>>

» Short video on string immutability:
https://www.youtube.com/watch?v=LTw5-5tx5wg

String Literals: many kinds

» Can use single or double quotes, and three
double quotes for a multi-line string

>>> print('I am a string')
'T am a string'

>>> print ("So am I!")

'So am I!'"

>>> s = """And me too,
though I am much longer
than the others"""

>>> print (s)

And me too,

though I am much longer

than the others

19

Booleans

* The following are false:
-0
— None
— False
— An empty string, list, tuple, or dictionary

 All other values are considered true

20

Boolean Expressions

 Boolean expressions can be
evaluated directly by the
Interpreter

* Note that when None is
returned the interpreter does
not print anything

>>> True and False
False

>>> False or True
True

>>> None and 2

>>> None or 2

2
>>>

21

No braces —i.e.no{ }

* Python uses indentation instead of braces { } to
determine the scope of expressions

* All lines must be indented the same amount to be
part of the scope (or indented more if part of an inner

scope)

» This forces the programmer to use proper indentation
since the indenting is part of the program!

22

Control flow: if

x = 20
y = 30
1f x < vy :
print ('x 1s less than y')

elif x > vy :
print ('x 1s greater than y')
else

print ('x 1is equal to y')

23

while loops

x =1
while x < 5 :
print (x)

Xx = xX + 1

whileloop.py

S python3 whileloop.py

1

2
3
4
S

Running 1n a shell

24

for loops

* |terates through a list of values

forloop1.py forloop2.py
for x in [1,7,13,2]: for x in range (5)
print (x) print (x)

$ python forloopl.py $ python forloop2.py
1 0
7 1
13 2
2 3
S 4

S

range(N) generates a list of numbers [0,1, ..., n-1]

