
Python Overview 1:
Getting Started

Credits: parts extracted from presentations by Moshe Goldstein and Michael DiRamio

Developer Operations

Presentation Overview

• Running Python
• Variables
• Basic data types
• Control flow

2

Installation / set-up

• Python 3 comes with most Linux distributions and can
be easily installed on Mac OS X

• Just open a terminal window and type “python3”
• You’ll get a prompt like this:

>>>

3

Installation / set-up

• Can get Windows version, but better to run Python on
Linux (in a virtual machine is fine). Mac is also fine.

• Choose Python 3 rather than Python 2
• Latest stable version is 3.7.2 (at time of writing) but any recent

version should be ok.
• Python 3 comes preinstalled on many Linux distributions. The

command is python3
$ python3

• For Amazon Linux, Python 3 first needs to be installed
$ sudo yum install python37
$ python3

4

Official documentation

https://docs.python.org/3/

5

Official documentation – tutorial

6

https://docs.python.org/3/tutorial

Official documentation – reference

7

https://docs.python.org/3/reference

Google's Python class - recommended

8

Google's Python class

9

• Available at:

https://developers.google.com/edu/python/

• Very suitable for this module because:

• It covers almost exactly the areas that we need

• It is pitched at the right level (assumes a little programming

already)

• Good exercises are included (with built-in tests of correct

completion

• However there is one drawback:

• It is based on Python 2 rather than Python 3

• For this reason we have created a Python 3 version of the

exercises – see labs.

The Python Interpreter

• Python is an interpreted
language

• The interpreter provides an
interactive environment to
play with the language

• Really useful for trying out
syntax

• Results of expressions are
printed on the screen

>>> 3 + 7
10
>>> 3 < 15
True
>>> 'print me'
'print me'
>>> print ('print me')
print me
>>>

10

Interactive Python – Hello World

• At the Python >>> prompt, type 'Hello world!'
>>> 'Hello world!'
Hello world!

• Or alternatively:
>>> print ('Hello world!')
Hello world!

Interactive
Python
prompt

Or put it in a script/program

• … to make your code reusable

• Use an editor to create a file called helloworld.py and
type in a line of code containing the call to print()

$ nano helloworld.py
(enter code: print ('Hello world!'))
$ cat helloworld.py
print ('Hello world!')

$ python3 helloworld.py
Hello world!

12

Linux
prompt

The print Statement

• Elements separated by commas print with a space
between them

13

>>> print ('Hello')
Hello

>>> print ('Hello', 'there')
Hello there

>>>

Comments

starts a comment

print ('This will print') # comment here
#print ('This will not')

Variables

• Variables are not declared, just assigned
• The variable is created the first time you assign it

a value
• Variables are references to objects
• Type information is with the object, not the

reference
• Everything in Python is an object

15

All variables are objects

• Everything is an
object

• Data type is a
property of the object
and not of the
variable

16

>>> x = 7
>>> print(x)
7

>>> x = 'Hello'
>>> print(x)
'Hello'

>>>

Numbers

• Python has integers,
long integers and
floating point numbers
(plus others types like
complex numbers)

17

>>> 132224
132224
>>> 132323 ** 4
306578259430545516241
>>> 1.23232
1.23232
>>> print (1.23232)
1.23232
>>> 1.3E7
13000000.0
>>>

String Literals

• Strings are immutable
– i.e. they can't be changed
– we just create a new string when we carry out an

operation

• + is overloaded to do concatenation

• Short video on string immutability:
https://www.youtube.com/watch?v=LTw5-5tx5wg

>>> x = 'hello'
>>> x = x + ' there'
>>> print (x)
'hello there'
>>>

Here a new string is created
and assigned to variable x

• Can use single or double quotes, and three
double quotes for a multi-line string

String Literals: many kinds

19

>>> print('I am a string')
'I am a string'
>>> print ("So am I!")
'So am I!'
>>> s = """And me too,
though I am much longer
than the others"""
>>> print (s)
And me too,
though I am much longer
than the others

• The following are false:
– 0
– None
– False
– An empty string, list, tuple, or dictionary

• All other values are considered true

Booleans

20

• Boolean expressions can be
evaluated directly by the
interpreter

• Note that when None is
returned the interpreter does
not print anything

Boolean Expressions

21

>>> True and False
False
>>> False or True
True
>>> None and 2
>>> None or 2
2
>>>

• Python uses indentation instead of braces { } to
determine the scope of expressions

• All lines must be indented the same amount to be
part of the scope (or indented more if part of an inner
scope)

• This forces the programmer to use proper indentation
since the indenting is part of the program!

No braces – i.e. no { }

22

Control flow: if

23

x = 20
y = 30
if x < y :

print ('x is less than y')
elif x > y :

print ('x is greater than y')
else :

print ('x is equal to y')

whileloop.py

Running in a shell

while loops

24

x = 1
while x < 5 :

print (x)
x = x + 1

$ python3 whileloop.py
1
2
3
4
$

• Iterates through a list of values

range(N) generates a list of numbers [0,1, …, n-1]

for loops

for x in [1,7,13,2]:
print (x)

$ python forloop1.py
1
7
13
2
$

forloop1.py
for x in range(5) :

print (x)

$ python forloop2.py
0
1
2
3
4
$

forloop2.py

