
Credits: parts extracted from presentations by Moshe Goldstein and Michael DiRamio

Developer Operations

Python Overview 2:
Useful Data Structures



Presentation Overview

• More on Strings
• Lists
• Tuples
• Dictionaries

2



Recap: all variables are objects

• Everything is an 
object

• Data type is a 
property of the object
and not of the 
variable

3

>>> x = 7
>>> print(x)
7

>>> x = 'Hello'
>>> print(x)
'Hello'

>>>



More on strings

4

• Python slice notation can be used to quickly access 
elements of strings and substrings

>>> s = '012345'
>>> s[3]
'3'
>>> s[1:4]
'123'
>>> s[2:]
'2345'
>>> s[:4]
'0123'
>>> s[-2]
'4'
>>>

Element 3 (counting from zero) 

Element 1 up to, but not including, element 4 

From character 2 to the end of the string

Full string up to, but not including, element 4 

2nd element from the end



String methods

5

• Python has a wide range of built-in string methods;
e.g.
>>> s = 'Hello'

>>> len(s)
5

>>> s.upper()

'HELLO'

>>> str(10.3)

'10.3'

>>>

Number of characters in the string

Convert to upper case

String representation of non-string object

• See https://docs.python.org/3/library/string.html
for a lot more string methods



• Ordered collection of data
• Data can be of different 

types
• Same subset (slice) 

operations as Strings

Lists

6

>>> x = [1,'hello', 3.14159]
>>> print(x)
[1, 'hello', 3.14159]
>>> x[2]
3.14159
>>> x[:2]
[1, 'hello']
>>>



Lists: Modifying Content

• Lists are mutable
– i.e. they can be edited by 

adding, removing, 
updating elements, etc

• x[i] = a reassigns the ith
element to the value a

• Since x and y point to the 
same list object, both are 
changed

• The method append
also modifies the list

7

>>> x = [1,2,3]
>>> y = x
>>> x[1] = 15
>>> print (x)
[1, 15, 3]
>>> print (y)
[1, 15, 3]
>>> x.append(12)
>>> print(x)
[1, 15, 3, 12]
>>> print(y)
[1, 15, 3, 12]
>>>



• The method 
append modifies 
the list and returns 
None

• List addition (+) 
returns a new list

Lists: Modifying Contents

>>> x = [1,2,3]
>>> y = x
>>> z = x.append(12)
>>> z == None
True
>>> y
[1, 2, 3, 12]
>>> x = x + [9,10]
>>> x
[1, 2, 3, 12, 9, 10]
>>> y
[1, 2, 3, 12]
>>>



• Tuples are immutable
versions of lists

• One strange point is the 
format to make a tuple with 
one element:
‘,’ is needed to differentiate 
from the mathematical 
expression (2)

Tuples

9

>>> x = (1,2,3)
>>> x[1:]
(2, 3)
>>> y = (2,)
>>> y
(2,)
>>> 



• A set of key-value pairs
• Very useful for storing certain kinds of data

Dictionaries

10

>>> temps = {'Dublin':15, 'Paris':18, 'Madrid':25, 
'New York':23, 'London':16}
>>> temps
{'London': 16, 'Dublin': 15, 'New York': 23, 
'Madrid': 25, 'Paris': 18}
>>> temps['Dublin']
15
>>>



• Dictionaries are mutable

Dictionaries

11

>>> temps = {'Dublin':15, 'Paris':18, 'Madrid':25, 
'New York':23, 'London':16}
>>> temps['Dublin'] = 13
>>> temps
{'London': 16, 'Dublin': 13, 'New York': 23, 
'Madrid': 25, 'Paris': 18}



• Assigning to a key that does not exist adds an entry

Dictionaries: Adding elements

12

>>> temps['Rome']=27
>>> temps
{'New York': 23, 'Paris': 18, 'Rome': 27, 'Dublin': 
13, 'Madrid': 25, 'London': 16}
>>>



• The del method deletes an element from a 
dictionary

Dictionaries: Deleting Elements

13

>>> temps
{'New York': 23, 'Paris': 18, 'Rome': 27, 'Dublin': 
13, 'Madrid': 25, 'London': 16}
>>> del(temps['New York'])
>>> temps
{'Paris': 18, 'Rome': 27, 'Dublin': 13, 'Madrid': 
25, 'London': 16}
>>>



• list() can create a 
new list as a copy 
of an existing one

• Or can use copy()
method

Copying lists

14

>>> first = [1,2,3]
>>> second = list(first)
>>> first[1] = 5
>>> print (first)
[1, 5, 3]
>>> print (second)
[1, 2, 3]
>>>

>>> first = [1,2,3]
>>> second = first.copy()
>>>



• dict() can create 
a new dictionary 
as a copy of an 
existing one

• Or can use copy()
method

Copying dictionaries

15

>>> tempsyest = {'Paris':18, 'Rome':21}

>>> tempstoday = dict(tempsyest)

>>> tempstoday['Rome'] = 23
>>> print(tempsyest)
'Paris': 18, 'Rome': 21
>>> print(tempstoday)

'Paris': 18, 'Rome': 23

>>> tempsyest = {'Paris':18, 'Rome':21}
>>> tempstoday = tempsyest.copy()

>>>



• Lists, Tuples, and Dictionaries can store any type 
(including other lists, tuples, and dictionaries!)

• Only lists and dictionaries are mutable
• All variables are references

Data type summary

16


