Developer Operations

Python Overview 3.

Functions, modules, classes

Presentation Overview

 Functions
* Importing modules
e Classes & OO

Function basics

def max(x,y) : >>> import myfuncs
if x > vy : >>> myfuncs.max(3,5)
return x 5
else : >>> myfuncs.max ('hello', 'there')
return y 'there'
myfuncs.py Python interpreter

Function names are like any variable

* Functions are objects

« The same reference
rules hold for them as
for other objects

10

>>> X
>>> X
10
>>> def x ()

print ('hello')
>>> X
<function x at 0x619f0>
>>> x ()
Hello
>>> x = 'blah'
>>> X
'blah'

Default parameters

Parameters can be
assigned default values

They are overridden if a
parameter is given for
them

The type of the default
doesn’t limit the type of
a parameter

>>> def foo(x = 3) :

print (x)

>>> foo ()

3

>>> foo(10)

10

>>> foo('hello')
hello

Named parameters

« Call by name

* Any positional arguments must come before
named ones in a call

>>> def foo (a,b,c)

print (a, b, c)

>>> foo(c = 10, a = 2, b
2 14 10

>>> foo(3, ¢ =2, b = 19)
3 19 2

14)

It's all objects...

* Everything in Python is really an object

— We've seen hints of this already...
"hello" .upper ()

list3.append('a')
dict2.keys ()

— These look like Java method calls.

— New object classes can easily be defined in addition
to these built-in data-types.

Defining a Class

* A class is a special data type which defines
how to build a certain kind of object.

* Instances are objects that are created which
follow the definition given inside of the class

Methods in Classes

* Define a method in a class by including
function definitions within the scope of the

class block
* There must be a special first argument self
In all method definitions

* There is usually a special method called
init In most classes

A simple class: student

student:

_ 1nit (self, n, a):
self.full name = n
self.age = a

get age(self):

self.age

Instantiating Objects

. init serves as a constructor for the class. It

usually does some Iinitialisation work

 The arguments passed to the class name are given to
its init () method

« So,the init method for student is passed “Bob”
and 21 and the new class instance is bound to b:

b = student ("Bob", 21)

Constructor: __init

« An init method can take any number of
arguments.

 Like other functions or methods, the arguments
can be defined with default values, making
them optional to the caller.

self

* The first argument of every method is a
reference to the current instance of the class

By convention, we name this argument self

* In init |, selfrefers to the object
currently being created; so, in other class

methods, it refers to the instance whose
method was called

self

» Although you must specify self explicitly when
defining the method, you don’t include it when

calling the method.

» Python passes it for you automatically

Defining a method:

(this code inside a class definition.)

set age(self,
self.age = num

num) :

Calling a method:

>>> x.set age (23)

N

Accessing attributes & methods of a class: use “.

>>> f = student ('Bob Smith', 23)

>>> f.full name # Access attribute
'"Bob Smith'

>>> f.get age() # Access a method
23

Subclasses

A class can extend the definition of another
class

— Allows use (or extension) of methods and attributes
already defined in the previous one.

— New class: subclass. Original: parent, ancestor or
superclass

 To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.
part time student (student) :

Definition of a class extending student

class student:

def init_ (self, n, a):
self.full name = n
self.age = a

def get age(self):
return self.age
class part_time_student(student):
def init_ (self, n, a, e):

student. init (self, n, a) #Call
self.employer = e

__init_ for student

def get age(self): #Redefines get age method entirely

print ("Age: " + str(self.age))

Importing modules

 Use classes & functions defined in another file

A Python module is a file with the same name
(plus the .py extension)

e Like Java import
 Three formats of the command:

import somefile

from somefile import *

from somefile import className

The difference? What gets imported from the file
and what name refers to it after importing

iImport...

import somefile

» Everything in somefile.py gets imported.

» To refer to something in the file, append the text
“somefile.” to the front of its name:

somefile.className.method ("abc")

somefile.myFunction (34)

Directories for module files

Where does Python look for module files?

The list of directories where Python will look
for the files to be imported is sys.path

This is just a variable named ‘path’ stored
iInside the ‘sys’ module

To add a directory of your own to this list,
append it to this list

sys.path.append('/my/new/path')

Python program layout — "boilerplate”

[#!/usr/bin/python3
Specifies which interpreter

i S to use for this program

def main():
print ('Hello there', sys.argv[1])

[if __name__ == '__main__': }
main ()

\ Distinguishes whether this
file is the start point of a
program or is an imported
module

