
Developer Operations

Python Overview 3:
Functions, modules, classes

Presentation Overview

• Functions
• Importing modules
• Classes & OO

2

myfuncs.py

Function basics

3

def max(x,y) :
if x > y :

return x
else :

return y

>>> import myfuncs
>>> myfuncs.max(3,5)
5
>>> myfuncs.max('hello', 'there')
'there'

Python interpreter

• Functions are objects
• The same reference

rules hold for them as
for other objects

Function names are like any variable

4

>>> x = 10
>>> x
10

>>> def x () :
... print ('hello')
>>> x
<function x at 0x619f0>
>>> x()
Hello

>>> x = 'blah'
>>> x
'blah'

• Parameters can be
assigned default values

• They are overridden if a
parameter is given for
them

• The type of the default
doesn’t limit the type of
a parameter

Default parameters

5

>>> def foo(x = 3) :
... print (x)
...
>>> foo()
3
>>> foo(10)
10
>>> foo('hello')
hello

• Call by name
• Any positional arguments must come before

named ones in a call

Named parameters

6

>>> def foo (a,b,c) :
... print (a, b, c)
...
>>> foo(c = 10, a = 2, b = 14)
2 14 10
>>> foo(3, c = 2, b = 19)
3 19 2

It’s all objects…

• Everything in Python is really an object
– We’ve seen hints of this already…
"hello".upper()
list3.append('a')
dict2.keys()

– These look like Java method calls.
– New object classes can easily be defined in addition

to these built-in data-types.

Defining a Class

• A class is a special data type which defines
how to build a certain kind of object.

• Instances are objects that are created which
follow the definition given inside of the class

Methods in Classes

• Define a method in a class by including
function definitions within the scope of the
class block

• There must be a special first argument self
in all method definitions

• There is usually a special method called
__init__ in most classes

A simple class: student

class student:
def __init__(self, n, a):

self.full_name = n
self.age = a

def get_age(self):
return self.age

Instantiating Objects

• __init__ serves as a constructor for the class. It
usually does some initialisation work

• The arguments passed to the class name are given to
its __init__() method

• So, the __init__ method for student is passed “Bob”
and 21 and the new class instance is bound to b:

b = student("Bob", 21)

Constructor: __init__

• An __init__ method can take any number of
arguments.

• Like other functions or methods, the arguments
can be defined with default values, making
them optional to the caller.

self

• The first argument of every method is a
reference to the current instance of the class

• By convention, we name this argument self
• In __init__, self refers to the object

currently being created; so, in other class
methods, it refers to the instance whose
method was called

self

• Although you must specify self explicitly when
defining the method, you don’t include it when
calling the method.

• Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)
self.age = num

>>> f = student('Bob Smith', 23)

>>> f.full_name # Access attribute
'Bob Smith'

>>> f.get_age() # Access a method

23

Accessing attributes & methods of a class: use “.”

Subclasses

• A class can extend the definition of another
class
– Allows use (or extension) of methods and attributes

already defined in the previous one.
– New class: subclass. Original: parent, ancestor or

superclass

• To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.

class part_time_student(student):

17

Definition of a class extending student

• Use classes & functions defined in another file
• A Python module is a file with the same name

(plus the .py extension)
• Like Java import
• Three formats of the command:

import somefile

from somefile import *

from somefile import className

• The difference? What gets imported from the file
and what name refers to it after importing

Importing modules

import somefile

• Everything in somefile.py gets imported.
• To refer to something in the file, append the text

“somefile.” to the front of its name:

somefile.className.method("abc")

somefile.myFunction(34)

import...

Directories for module files

• Where does Python look for module files?
• The list of directories where Python will look

for the files to be imported is sys.path
• This is just a variable named ‘path’ stored

inside the ‘sys’ module
• To add a directory of your own to this list,

append it to this list
sys.path.append('/my/new/path')

Python program layout – "boilerplate"

#!/usr/bin/python3

import sys

def main():
print ('Hello there', sys.argv[1])

if __name__ == '__main__':
main() Distinguishes whether this

file is the start point of a
program or is an imported
module

Specifies which interpreter
to use for this program

