
Developer Operations

Python Overview 4:
Additional topics

Presentation Overview

• Running shell commands
• Formatting strings
• User input

2

• You can run shell commands within Python and
capture the output

• Very handy for many DevOps tasks

Running shell commands

3

• Use the subprocess module
subprocess.run()

• There are many usage variations, e.g.

Running shell commands

4

$ mkdir demo; cd demo; touch testfile1 testfile2 testfile3
$ python3
>>> import subprocess
>>> result = subprocess.run("pwd", shell=True)
/home/jbloggs/demo
>>> print(result.returncode)
0 (0 normally indicates success)
>>> result = subprocess.run(["ls", "-l"])
-rw-rw-r-- 1 jbloggs jbloggs 0 Jan 16 10:37 testfile1
-rw-rw-r-- 1 jbloggs jbloggs 0 Jan 16 10:37 testfile2
-rw-rw-r-- 1 jbloggs jbloggs 0 Jan 16 10:37 testfile3
>>>

• Beware that running shell commands from within
a program can introduce security threats
– If exposed directly or indirectly to untrusted users (e.g.

via a web app)

• Risk of command injection attack
• Imagine we have a variable filename populated

from a user web form and the code

• Consider what happens if filename comes from
malicious input such as

Running shell commands – security note

>>> result = subprocess.run("cat " + filename, shell=True)

testfile; /bin/rm –rf / Warning: don't test
with this example!!

String Formatting: old "C-style"

• Similar to printf in the C programming language
• <formatted string> % <elements to insert>
• Can usually just use %s for everything – this will

convert the object to its String representation.

6

>>> employee = 'Joe Bloggs'
>>> salary = 20000

>>> print("%s earns €%.2f per month" % (employee, salary/12))
Joe Bloggs earns €1666.67 per month
>>>

Format specifiers

String Formatting – string.format()

• Similar to C-style but tidier syntax
• More flexible with named parameters (can

change order for example)

>>> employee = 'Joe Bloggs'
>>> salary = 20000

>>> print("{0:s} earns €{1:.2f} per month".format(employee,
salary/12))

Joe Bloggs earns €1666.67 per month
>>> print("{name:s} earns €{pay:.2f} per month".format(name=employee,

pay=salary/12))

Joe Bloggs earns €1666.67 per month
>>>

String Formatting – new "f-strings"

• Introduced in Python 3.6
• Less verbose / more compact code

8

>>> employee = 'Joe Bloggs'
>>> salary = 20000

>>> print(f"{employee:s} earns €{salary/12:.2f} per month")
Joe Bloggs earns €1666.67 per month

• The input(string) method returns a line of
user input as a string

• The parameter is used as a prompt
• The string can be converted by using the

conversion methods int(string), float(string),
etc.

Input

9

Input example

print ("What's your name?")

name = input("> ")
print ("What year were you born?")

birthyear = int(input("> "))

print ("Hi %s! You are %d years old!" % (name,
2019 - birthyear))

input.py

$ python3 input.py
What's your name?
> Michael
What year were you born?

> 1985
Hi Michael! You are 34 years old!

$

