
Monitoring Cloud Services

Developer Operations

You Are Flying Blind Without Instrumentation

• To use the cloud effectively, you
need to know what is happening,
e.g.
– Are services up and running?
– Are applications performing as

expected?
– Are there any faults or bottlenecks?
– How much of your infrastructure is

actually being used?

Collecting Metrics: Amazon CloudWatch

Amazon CloudWatch:
• Monitors instances, and collects and processes raw data into

readable, near real-time metrics.
• Sends notifications and triggers auto scaling actions based on

metrics you specify.

CloudWatch Monitoring

CloudWatch offers:
• A distributed statistics gathering system; it collects and

tracks metrics.
• Metrics that are seamlessly collected at the hypervisor level

by default.
• The ability to create and use custom metrics of data

generated by your own applications and services.
• Examples:

– The time web pages take to load
– Request error rates
– Number of simultaneous processes or threads

CloudWatch Alarm Examples

EC2

RDS
Database

If CPU utilization is > 60% for 5 minutes…

If number of simultaneous connections is > 10 for one minute…

If number of healthy hosts is < 5 for 10 minutes… Load
Balancer

CloudWatch Alarms and Actions

CloudWatch alarms:
Measure a single

metric and perform
one or more actions

Stop, terminate, reboot, or recover an
EC2 instance

Scale an Auto Scaling group in
or out

Send message to Simple
Notification Service (SNS)

Basic Custom Monitoring for Assignment 1

• We will use CloudWatch later in the semester (Assignment 2)
• For now, we will write our own simple monitoring tools with

Python and use some basic DevOps to deploy these and
ideally respond to what is observed

• Assignment 1 solution
– Uses local Python program to launch EC2 instance and install web

server
– Copies monitoring program (also in Python) up onto instance and

runs this remotely on the instance
– This program is provided: check_webserver.py

check_webserver.py

import subprocess

def checkhttpd():
try:

cmd = 'ps -A | grep httpd'
subprocess.run(cmd, check=True, shell=True)
print("Web Server IS running")

except subprocess.CalledProcessError:
print("Web Server IS NOT running")

def main():
checkhttpd()

This is the standard boilerplate that calls the main() function.
if __name__ == '__main__':

main()

Check for httpd process
by filtering output of ps

command

No exception thrown, so
grep must have found a

match in ps output

Exception thrown

Copy check_webserver.py up to EC2 instance

• Use scp command
• Test using terminal

• Then do it from a Python script – e.g. using subprocess.run()

$ scp –i keyname.pem check_webserver.py ec2-user@11.22.33.44:.

Run check_webserver.py remotely on EC2 instance

• Use ssh remote command execution
• First need to install Python3 on instance

• Then we can run the script

• Alternatively we can run directly, but need to give it permissions

$ ssh –i keyname.pem ec2-user@11.22.33.44 'sudo yum install python37'

$ ssh –i keyname.pem ec2-user@11.22.33.44 'python3 check_webserver.py'

$ ssh –i keyname.pem ec2-user@11.22.33.44 'chmod 700 check_webserver.py'
$ ssh –i keyname.pem ec2-user@11.22.33.44 ./check_webserver.py'

Exercises

• See additional week 5 monitoring exercises

