
DevOps: some tips for the first assignment

This document is designed to give you most of what you need to adapt parts of the Boto3
example programs provided in Week 3 and combine with the provided check_webserver.py
script to complete the Assignment 1 core specification.

Creating instances

▪ Credentials. Ensure you have set up your credentials correctly. Instructions are
given in the Getting started with Boto3 lab. You can find your credentials file to
troubleshoot any issues in a directory called .aws off your home directory.

▪ Documentation. ec2 = boto3.resource('ec2')
assigns an EC2 ServiceResource object to the variable ec2. To see what you can do
with this object, the following link will take you directly to the documentation:
http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#service-resource

▪ The create_instances() method of ServiceResource can take any of a large
number of optional parameters, some of which you will want to set to suitable values.
For example you’ll need to set a KeyName for SSH access. You can also set UserData,
SecurityGroupIDs and/or SecurityGroups (see below).

▪ Key name. When specifying a KeyName in create_instances(), drop the .pem
or .ppk extension.

▪ User Data can be used to configure instance start-up scripts. When setting the
UserData parameter in create_instances(), you will probably want to use a
multi-line string. Python allows you to specify a multi-line string by starting and
ending it with three quotation marks – i.e. """ You can find out more about User
Data here: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

▪ Security group. When starting a new instance using create_instances(), the

instance is launched into your VPC’s default security group unless you tell it
otherwise. You can do this using the SecurityGroupIDs or SecurityGroups
parameter. Each of these parameters is a Python list type. To specify a single
security group (by ID) which you have already set up, it will look like this:
 instances = ec2.create_instances(

 ImageId='ami-0fad7378adf284ce0',

 ...

 SecurityGroupIds=['sg-2a07095e4e3fda0c2'], # HTTP and SSH

 InstanceType='t2.micro')

▪ Security group creation. If you do not have a security group already set up, you can
do so manually in advance, or you can set one up as part of your script. For this you
can use the create_security_group() method of EC2 ServiceResource.

▪ Security groups and VPCs. Resources in AWS accounts can be segmented into
Virtual Private Clouds (VPCs). Every AWS account has a default VPC and new
instances launched using the SDK use this default VPC unless instructed otherwise.
Note however that your RosettaHUB AWS account has another VPC called
"RosettaHUB VPC". When configuring resources (such as security groups) at the
management console that you are working in the default VPC. A security group in the
RosettaHUB VPC will not be usable by instances in the default VPC.

▪ Saving your budget. When testing scripts that create instances, it is important to
clean up after yourself – i.e. terminate such instances. You can do this using the web
console or a script. Also make sure you specify micro instances at launch

http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#service-resource
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Managing instances

▪ The create_instances() method will return a list of E2.Instance objects. This list
will usually have one item unless you set MinCount and/or MaxCount to values other
than 1. You can extract the individual instances using the usual list operations – e.g.
instances[0]

▪ An E2.Instance object has several parameters and methods that you can access to
manage the instance. See
http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#instance.

▪ Reload. Always call the reload() method on an instance before trying to access its
properties – just a simple instance.reload() (where the object is named
instance). This will ensure the object’s properties are refreshed.

▪ Tags. To help keep track of your instances, use the create_tags() method of the
instance object to add a Name tag to the instance; i.e.

 name_tag = {'Key': 'Name', 'Value': 'Demo instance'}

 instance.create_tags(Tags=[name_tag])

(where the Instance object is named instance). Specifying the Key as Name ensures

that the tag is visible in the default instances view on the AWS management console.

▪ You can get public IP address using the public_ip_address attribute of the Instance
class; i.e. if the object is called instance, then it is instance.public_ip_address
(you could use the public_dns_name attribute either)

▪ After creating the instance and getting the IP address, you will need to wait until the
machine has booted up and started the SSH service before you can connect and issue
commands to it. There are a number of ways to do this. For example, you could sleep
for a fixed period of time, e.g. time.sleep(60), you could write a loop to keep trying
every few seconds, or (best) you could implement a waiter method. For example
there if you have an EC2 instance object called instance, you could do this with:

 instance.wait_until_running()

SCP (Secure copy)

scp allows you to transfer files using SSH. The command to copy a file called
check_webserver.py in the current working directory on the local machine to an EC2
instance is:
scp -i mykeyfile.pem check_webserver.py ec2-user@52.42.23.2:.

(notice the colon following by dot at the end, after the IP address or DNS name).

SSH remote command execution

The general syntax for SSH remote command execution on an EC2 instance is:
ssh –i mykeyfile.pem ec2-user@ip_address 'enter command here'

You’ll need the following additional option for the first SSH connection to a new instance:
-o StrictHostKeyChecking=no

(this is required to suppress the new host key confirmation (yes/no) prompt)

Putting the above together, your first ssh command will look something like this:

cmd1 = "ssh -o StrictHostKeyChecking=no -i mykeyfile.pem

ec2-user@" + ip_address + " 'pwd'"

(replace 'pwd' with a more useful command).

http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#instance

Before executing a remote command from within a Python script, it’s a good idea to print
the command string to the console (to help with debugging). You should also print the
status and output values for the same reason.

You may have noticed that the “yum” package manager on Amazon Linux prompts the
user for (yes/no) confirmation before installing a package. This can be suppressed using
the yum –y option. For example, to remotely install apache on an EC2 instance you
might have the following:
ssh -o StrictHostKeyChecking=no –i mykeyfile.pem ec2-user@52.42

.23.2 'sudo yum -y install httpd'

Script permissions

After copying a script to your newly-created EC2 instance, you’ll need to make it
executable. The command for this will be something like:

ssh –i mykeyfile.pem ec2-user@52.42.23.2 'chmod 700 check_webserver.py'

Use of echo command

The echo command can be used to redirect output to a file. For example you can append
the text ‘hello’ to a file test.txt using
 echo 'hello' >> test.txt

If you want to overwrite the contents of the file then just use
 echo 'hello' > test.txt

You can use echo to write multiple lines to a file e.g.
 echo '<html>

 <p>To view the uploaded S3 image click</p>

 HERE

 </html>' > index.html

A more elegant solution might be to open a file for write as described here:
https://developers.google.com/edu/python/dict-files

For your assignment you will of course need to replace the url above with your S3 bucket
url.

https://developers.google.com/edu/python/dict-files

	DevOps: some tips for the first assignment
	This document is designed to give you most of what you need to adapt parts of the Boto3 example programs provided in Week 3 and combine with the provided check_webserver.py script to complete the Assignment 1 core specification.
	Creating instances
	Managing instances
	SCP (Secure copy)
	SSH remote command execution
	Script permissions
	Use of echo command

