
Load Balancing

Developer Operations

2

Load Balancing

• Most performance problems are related to competition
for shared resources (processor, memory, disk, network
capacity, etc.)

• Load balancing allows applications to proceed
concurrently without all competing for the same
resources

• Simple example: distribute application load between
server and browser
– e.g. JavaScript to validate user form input in browser to avoid

repeated validation round-trips to server

3

Server load balancing architecture

• Imagine a distributed environment containing:
– Several clients
– Multiple replicated servers that can serve client requests

• How are client requests balanced across the
servers?
=> This is the essential task of load balancing

Server load balancing architecture – example 1

• Client calls on name server to find the location of a suitable
server

• Name server can spread client objects across multiple servers
– Often ‘round robin’

• Client is bound to server until it decides to request new
address from name server

Server load balancing architecture – example 2

• Client calls load balancing router when issuing request
• Router passes request to chosen server
• Follow up dialogue directly from client to same server

6

Server load balancing architecture – example 2

• Scales well …
– Router only involved when request is issued
– Follow-up dialogue directly from client to same server

• Good for handling state
– Initial server allocation based on response time

• Client allocated to least-loaded server

• But …
– No support for dynamic re-balancing as server load

changes

Server load balancing architecture – example 3

• Some systems involve the router in every browser request
– Request goes to router who then passes it on to a server process
– Router can be a bottleneck here

• Need to consider router scalability and fault tolerance as well!

Load balancing
router

8

Scheduling algorithms – server selection

• Several approaches, including:
– Round robin

• Apply each successive request to each server in turn
– Highest response time

• Based on monitoring server performance
– Lowest load

• Based on monitoring server resource utilisation
– Match request size to server performance
– Match request priority to server performance/availability
– Combination of the above

9

Scheduling algorithms – request selection

• Several approaches, including:
– First come first served
– Priority queueing

• Maintain a number of request queues with different priorities
• e.g. a service like Tickemaster might like to complete work-in-

progress bookings before admitting new ones
– Shortest job first

• Prioritise request with lower resource requirements
• Risks request starvation – long jobs never processed

– Shortest remaining time
• Prioritise request where overall session/transaction is closest

to completion

AWS Elastic Load Balancing

10

Elastic Load
Balancing

• Distributes traffic across multiple EC2
instances, in multiple Availability Zones (AZs)

• Supports health checks to detect unhealthy
Amazon EC2 instances
– Traffic no longer routed to instances that are not

responding adequately

• Routes and load balances HTTP, HTTPS
and TCP traffic to EC2 instances

• Region-specific but not dependent on
specific AZ
– A "highly available" AWS-managed service

AWS Classic Load Balancer

Register
instances with
your load
balancer

Availability Zone A Availability Zone B

Load Balancer

AWS Application Load Balancer

Load Balancer

Target Group /mobile

Register instances as targets in a target group, and route traffic
to a target group.

Listener ListenerRule Rule Rule

Target Group Target Group /API

Target Target Target Target Target Target Target

Health
Check

Health
Check

Health
Check

Next: Create an Application Load Balancer

