
AWS Well-Architected
Framework

Developer Operations

What is the AWS Well-Architected Framework?

• The goal of this framework is to help cloud architects to
build the most secure, high-performing, resilient, and
efficient infrastructure possible for their applications

• It provides a set of questions developed by AWS experts
to helps customers think critically about their
architecture.

• It asks, "Does your infrastructure follow best practices?"

AWS Well-Architected Outcomes

Architects should leverage the AWS Well-Architected
Framework in order to:

• Increase awareness of architectural best practices.

• Address foundational areas that are often neglected.

• Evaluate architectures using a consistent set of principles.

AWS Well-Architected Guidance

• The AWS Well-Architected Framework does not
provide:

– Implementation details
– Architectural patterns

– Relevant case studies

• However, it does provide:
– Questions centered on critically understanding

architectural decisions

– Services and solutions relevant to each question
– References to relevant resources

– Well Architected Tool
https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html

https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html

AWS Well-Architected Framework Documentation

• White papers:
– AWS Well-Architected Framework (June 2018)
– Security Pillar (July 2018)
– Reliability Pillar (September 2018)
– Performance Efficiency Pillar (July 2018)
– Cost Optimization Pillar (July 2018)
– Operational Excellence Pillar (July 2018)

Pillars Of The Well-Architected Framework

Security Reliability Performance
Efficiency

Cost
Optimization

Protect
information
and systems.

Recover from
failure and

mitigate
disruption.

Use resources
sparingly.

Eliminate
unneeded
expense.

Operational
Excellence

Manage and
monitor.

Security

• The ability to protect:
– Information
– Systems
– Assets

• While delivering business value through:
– Risk assessments
– Mitigation strategies

Security

Protect
information
and systems

Security Pillar Principles

Apply Security at All Layers
Enable Traceability
Automate Responses To Security Events
Focus On Securing Your System
Automate Security Best Practices

Best Practice: Secure Your Infrastructure Everywhere

Build security into
every layer of your

infrastructure.

Physical data centers typically rely on security
at the perimeter. AWS enables you to
implement security at the perimeter as well as
within and between your resources.

Things to consider:
Isolate parts of your infrastructure
Encrypt data in transit and at rest
Enforce access control granularly, using the
principle of least privilege
Use multi-factor authentication

Leverage managed services
Log access of resources
Automate your deployments to keep
security consistent

Well-Architected Pillar 1: Security

• The ability to protect information, systems, and
assets while delivering business value through risk
assessments and mitigation strategies.

– Identity and access management
– Detective controls
– Infrastructure protection
– Data protection
– Incident response

Reliability

Reliability

Recover from
failure and

mitigate
disruption.

The ability of a system to:

Recover from infrastructure or service
failures

Dynamically acquire computing resources to
meet demand

Mitigate disruptions such as:
ØMisconfigurations
ØTransient network issues

Reliability: Design Principles

• Test recovery procedures
• Automatically recover from failure
• Scale horizontally to increase aggregate system

availability
• Stop guessing capacity
• Manage change in automation

Key Services For Reliability

Areas Key Services

Foundations

Change management

Failure management

AWS IAM Amazon VPC

AWS CloudTrail AWS Config

AWS CloudFormation

Amazon
CloudWatch

Performance Efficiency

Performance
Efficiency

Use resources
sparingly.

The ability to:

Use computing resources efficiently to meet
system requirements

Maintain that efficiency as demand changes
and technologies evolve

Key Services For Performance Efficiency

Areas Key Services

Compute

Storage

Database

Space-time trade-off

Amazon EBS Amazon S3

Amazon RDS

Auto Scaling

Amazon Glacier

Amazon CloudFront

Amazon DynamoDB

Amazon
CloudWatch

Cost Optimization

Cost
Optimization

Eliminate
unneeded
expense.

The ability to avoid or eliminate:

Unneeded cost

Suboptimal resources

Best Practice: Optimize For Cost

Take advantage of
AWS's flexible

platform to increase
your cost efficiency.

Ensure that your resources are sized
appropriately, that they scale in and out based
on need, and that you're taking advantage of
different pricing options.

Things to consider:

Are my resources the right size and
type for the job?

What metrics should I monitor?

How do I make sure that resources
not in use are turned off?

How often will I need to use this
resource?

Can I replace any of my servers with
managed services?

Key Services For Cost Optimization

Areas Key Services

Matched supply and demand

Cost-effective resources

Expenditure awareness

Optimizing over time

Amazon CloudWatch

Auto Scaling

Amazon SNS

Spot and Reserved
Instances AWS Cost Explorer

AWS Trusted AdvisorAWS Blog & What’s New

Cost Allocation
Tags

Operational Excellence

The ability to:

Successfully manage daily operations

Manage and automate changes

Respond to events

Operational
Excellence

Manage and
monitor.

EXTRA : CloudFormation

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

Anatomy Of A CloudFormation Template

"Description" : "This template builds a
VPC with one public and one private
subnet",

Description:
Text string that describes the template
§ Literal string between 0 and 1024 bytes long
§ Cannot use a parameter or function to specify it

"Description" : "JSON
string",

"Metadata" : {
template metadata

},

"Parameters" : {
set of parameters

},

"Mappings" : {
set of mappings },

"Conditions" : {
set of conditions

},

"Resources" : {
set of resources },

"Outputs" : {
set of outputs }

JSON example

Anatomy Of A CloudFormation Template

Resources:
Services (and their settings) that you want to launch
in the stack
Properties:
§ Each resource must be declared separately (except

multiple instances of the same resource)
§ Resource declaration has the resource’s attributes

"Description" : "JSON
string",

"Metadata" : {
template metadata

},

"Parameters" : {
set of parameters

},

"Mappings" : {
set of mappings },

"Conditions" : {
set of conditions

},

"Resources" : {
set of resources },

"Outputs" : {
set of outputs }

"Resources" : {
"Logical ID" : {

"Type" : "Resource type",
"Properties" : {

Set of properties } } }
JSON example

Anatomy Of CloudFormation Template: Resources

"Resources" : {
"MyInstance" : {

"Type" : "AWS::EC2::Instance",
"Properties" : {

"UserData" : {
"Fn::Base64" : {

"Fn::Join" : ["", ["Queue=", { "Ref" : "MyQueue" }]]
} },

"AvailabilityZone" : "us-east-1a",
"ImageId" : "ami-20b65349" }

},
"MyQueue" : {

"Type" : "AWS::SQS::Queue",
"Properties" : { } } }

JSON example

Resource Attribute: DependsOn

The "DependsOn" attribute specifies that the creation of a specific
resource follows another. You can use the DependsOn attribute with
any resource.

"Resources" : {
“AppServerInstance" : {

"Type" : "AWS::EC2::Instance",
"Properties" : {

"ImageId" : {
"Fn::FindInMap" : ["RegionMap", { "Ref" : "AWS::Region" }, "AMI"]

}
},
"DependsOn" : "myDB"

},
"myDB" : {

"Type" : "AWS::RDS::DBInstance",
"Properties" : {

…
}

Creates the Amazon EC2
instance only after the RDS
database instance has been
created.

JSON example

When A DependsOn Attribute Is Required

The following resources depend on a VPC gateway
attachment when they have an associated public IP
address and are in a VPC:

§ Auto Scaling group
§ Amazon EC2 instances

§ Elastic Load Balancing load balancers
§ Elastic IP address

§ Amazon RDS database instances

§ Amazon VPC routes that include the Internet gateway

Special Resource: Wait Condition

Wait conditions are special CloudFormation resources that
pause the creation of the stack and wait for a signal before it
continues.
Use a wait condition to coordinate the creation of stack resources with other configuration actions
external to the stack creation.

"myWaitCondition" : {
"Type" : "AWS::CloudFormation::WaitCondition",
"DependsOn" : "Ec2Instance",
"Properties" : {

"Handle" : { "Ref" : "myWaitHandle" },
"Timeout" : "4500"

}
} Wait condition that begins after

the successful creation of the
“Ec2Instance” resourceJSON example

Anatomy Of A CloudFormation Template

"Description" : "JSON
string",

"Metadata" : {
template metadata

},

"Parameters" : {
set of parameters

},

"Mappings" : {
set of mappings },

"Conditions" : {
set of conditions

},

"Resources" : {
set of resources },

"Outputs" : {
set of outputs }

Parameters:
Values you can pass in to your template at runtime
§ Allow stacks to be customized at launch of a

template
§ Can specify allowed and default values for each

parameter

CloudFormation Template: Parameters Example

"Parameters" : {
"InstanceTypeParameter" : {
"Type" : "String",
"Default" : "t2.micro",
"AllowedValues" : ["t2.micro", "m1.small", "m1.large"],
"Description" : "Enter t2.micro, m1.small, or m1.large. Default

is t2.micro." } }

"Resources" : {
"WebAppInstance" : {
"Type" : "AWS::EC2::Instance",
"Properties" : {

"InstanceType" : { "Ref" : "InstanceTypeParameter" },
"ImageId" : "ami-2f726546"

}
}

CloudFormer

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html

CloudFormer is a template creation beta tool that creates an
AWS CloudFormation template from existing AWS resources in
your account. You select any supported AWS resources that are
running in your account, and CloudFormer creates a template
in an Amazon S3 bucket.
Use CloudFormer to produce templates that you can use as a
starting point. Not all AWS resources or resource properties are
supported.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-using-cloudformer.html

