More on Classes

Encapsulation

Produced Dr. Siobhan Drohan
by: Mr. Colm Dunphy
Mr. Diarmuid O’Connor

@ Waterford Institute of Technology Department of Computing and Mathematics

o/ INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
\"*.\-Jh;iiﬂz

Topics list

1. Recap: Version 6.1

2. Our design smells!
3. Encapsulation
4. Refactoring Spot:

— Access Modifiers
— Accessors and Mutators

— Validation

Class Diagram for Spot Version 6.1

Object Type/ N Spot
Class Name
xCoord
yCoord
Fields i.e. the diameter
) Y
attributes of the class red
green
blue
gray
Spot()
Spot(float, float, float) Overloaded
Methods Spot(float, float, float, int) Constructor
i.e_ the behaviours Of > SpOt(f/OGt, f/OGt, f/OCIt, int, int, Int)_
the class display()
colour(int, int, int):l(Overloaded
colour(int) Methods

move(float, float) |

Spot Class
— Version 6.1

cl

ass Spot{

float xCoord, yCoord;
float diameter;
int red, green, blue;

Spot()
{
}

Spot (float xCoord, float yCoord, float diameter)

{

this.xCoord = xCoord;
this.yCoord = yCoord;
this.diameter = diameter;

}

// colour methods...
// display method...
// move method...

Source: Reas & Fry (2014)

class Spot{

SpOt CIaSS // fields and constructors...
- Ve rSiOn 6. 1 void display ()

{

ellipse(xCoord, yCoord, diameter, diameter);

}

g e void colour (int red, int green, int blue)

{
. this.red =red;
this.green = green;

. this.blue = blue;
fill (red, green, blue);

}

void colour (int gray){
this.gray = gray;
fill (this.gray);
}
}

Suurce: reds & rry (zuid)

SpOt ClaSS — class Spot{

float xCoord, yCoord;

VerSion 7.0 float diameter;

int red, green, blue;

Spot sp;
// constructors...
void setup() void display(){
{ ellipse(xCoord, yCoord, diameter, diameter);
size (100,100); }
noStroke();
sp = new Spot(33, 50, 30); void colour(int red, int green, int blue)
} {
this.red = red;
void draw() this.green = green;
{ this.blue = blue;
background(0); fill (red, green, blue);
sp.colour(255, 0, 0); }
_sp.diameter = 30000; ~7»move methods...
sp.display(); }
}

Source: Reas & Fry (2014)

Topics list

1. Recap: Version 6.1

2. Our design smells!

3. Encapsulation
4. Refactoring Spot:

— Access Modifiers
— Accessors and Mutators

— Validation

Our Our design smells!

 We can directly access the diameter field
(and all other fields) in the Spot class
from another class, and set it to a value that is
completely preposterous!

* Also, when we directly access a field in a class,
we are applying a “behaviour” to that field
I.e. resizing the circle.

— But, aren’t methods supposed to be the

Our Our design smells!

* Our design violates one of the basic principles
of object-oriented design:

Encapsulation!

Topics list

1. Recap: Version 6.1
2. Our design smells!

3. Encapsulation

4. Refactoring Spot:

— Access Modifiers
— Accessors and Mutators

— Validation

Encapsulation

* Encapsulation (data hiding)
is a fundamental Object Oriented concept.

* How to achieve encapsulation?

1. wrap the data (fields) and code acting on the
data (methods) together as single unit.

2. hide the fields from other classes.

3. access the fields only through the methods of
their current class.

http://www.tutorialspoint.com/java/java encapsulation.htm

Encapsulation in Java — steps 1-3

Encapsulation Step Approach in Java

1. Wrap the data (fields) |public class ClassName

and code acting on the | { |
data (methods) Fields

Constructors

together as single unit.
Methods

}

2. Hide the fields from | Declare the fields of a class as private.
other classes.

3. Access the fields only | Provide public setter and getter
through the methods of | methods to modify and view the fields
their current class. values.

http://www.tutorialspoint.com/java/java encapsulation.htm

Topics list

1
2.
3.
4

Recap: Version 6.1
Our design smells!
Encapsulation
Refactoring Spot:

— Access Modifiers
— Accessors and Mutators

— Validation

Refactoring Spot: Access Modifiers

e Java provides a number of access modifiers to set
access levels for classes, fields, methods and
constructors.

e The four access levels are:

— Visible to the package, the default. No modifiers
needed.

— Visible to the class only (private).
— Visible to the world (public).

— Visible to the package and all subclasses (protected).

http://www.tutorialspoint.com/java/java modifier types.htm

Refactoring Spot: Access Modifiers

e Java provides a number of access modifiers to set

access levels for classes, fields, methods and
constructors.

 The four access levels are:
— Visible to the package, the default. No modifiers
needed.

In Processing, we will focus
on public and private.

— Visible to the package and all subclass€s (protected).

http://www.tutorialspoint.com/java/java modifier types.htm

Refactoring Spot 7.0: Access Modifiers

public class Spot{
float xCoord, yCoord;
float diameter;
int red, green, blue;

Spot()
{
}

// other constructor
void display(){

Encapsulation step 1 is complete;
all fields, constructors and methods are all in a
single unit, called Spot.

We just changed the class access level to public
(default is package).

ellipse(xCoord, yCoord, diameter, diameter);

}

// move method...
// colour methods...

Filename = spot

Refactoring Spot 7.0: Access Modifiers

public class Spot{

float xCoord, yCoord;

float diameter;
int red, green, blue;

Spot()
{
}

However, as the default access level is package
= our methods and fields are all package level access.

Problem: this breaks Encapsulation step 2
i.e. the fields of a class should be private.

// other constructon

void display(){

ellipse(xCoord, yCoord, diameter, diameter);

}

// move method...
// colour methods..

Refactoring Spot 7.0: Access Modifiers

public class Spot{
private float xCoord, yCoord;

private float diameter;
private int red, green, blue;

Spot() To fix Encapsulation step 2,
; we declare all the fields with private access.

// other constructor
void display(){
ellipse(xCoord, yCoord, diameter, diameter);
}
// move method...
// colour methods...

Refactoring Spot 7.0: Access Modifiers

PROBLEM: You have a garden and it is public.
Anyone can take the properties of the
garden when they want.

http://www.evinw.com/w/

Refactoring Spot 7.0: Access Modifiers

PROBLEM: You have a garden and it is public.
Anyone can take the properties of the
garden when they want.

SOLUTION? Put a high fence around my garden, now it
is safe! But waite, | can no longer access my own garden.

http://www.evinw.com/w/

Refactoring Spot 7.0: Access Modifiers

public class Spot{

private ::oat >(;Coord, yCoord,; The private fields are not viewable or
private float diameter; updatable outside the class Spot.

private int red, green, blue;
//constructors...

//display method...

// move method...

// colour methods... _ |
SOLUTION? Put a high fence around my garden, now it
} is safe! But waite, | can no longer access my own garden.

Other classes don’t know these exist.

http://www.evinw.com/w/

Topics list

1
2.
3.
4

Recap: Version 6.1
Our desigh smells!
Encapsulation
Refactoring Spot:

— Access Modifiers
— Accessors and Mutators (getters & setters)

— Validation

Refactoring Spot 7.0: Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

http://www.evinw.com/w/

Refactoring Spot 7.0: Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

http://www.evinw.com/w/

Requester

Set Property Outside

Get Property Requester
\Y

s [

Refactoring Spot 7.0: Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

Setters and Getters to Safeguard Data

Set Property Outside
Get Property Requester

Encapsulation Step 3:

Requester

Provide public setter
and getter methods to
modify and view the
fields values.

http://www.evinw.com/w/

Getters (Accessor Methods)

* Accessor methods
— return information about the state of an object
— i.e. the values stored in the fields.

* A ‘getter’ method
— is a specific type of accessor method and typically:

* contains a return statement
(as the last executable statement in the method).

* defines a return type.
* does NOT change the object state.

Getters

return type
visibility modifier / method name

/ parameter list

‘@ float getDiameter ()‘// (empty)

return diameter; < return statement

N\

start and end of method body (block)

Setters (Mutator methods)

* Mutator methods

— change (i.e. mutate!) an object’s state.

e A ‘setter’ method
— is a specific type of mutator method and typically:

e contains an assignment statement
* takes in a parameter
* changes the object state.

Setters

return type

visibility modifier method name parameter

Vo / /

public void setDiameter (float diameter)
{
this.diameter = diameter;
} / I ™~
/ |
field being mutated assignment Value passed

statement as a parameter

Getters/Setters

* For each instance field in a class,
you are normally asked to write:

— A getter

* Return statement

— A setter
* Assignment statement

Refactoring Spot 7.0: Getters

public class Spot{ sublic fleat-getXCoord(){
private tloat xCoord, yCoord; return xCoord:;

private float diameter; public int getGreen(){

return green;
//constructors publicfoat-getYCoord(){ }
return yCoord;
//display methodl\..

// move method..]

private int red, ereen, blue;

public int getBlue(){
return blue;

// colour methods). public int gétRed(){ }
return red;
public float getDianieter(){ } public int getGray(){
return diameter; return gray;
)) |

} //end Spot class

Refactoring Spot 7.0: Setters

public class Spot{
private float xCoord,yCoord;
private float diameter;

private int red)\green, blue;
=<

//constructors...
//display method...

// move method.\

// colour methody...
// assessor methodls...

public void setDiameter (float diameter){

}

this.diameter = diameter;

public vojd setXCoord (float xCoord){

this.xCoord = xCoord;

}

public void setYCoord (float yCoord){
this.yCoord = yCoord;

public void setRed (int red){
his.red = red;

}

Oublic void*setGreen (int green){
this.green = green,;

}

public void setBlue (int blue){

Spot Class — Version 7.0

Spot sp;
class Spot{
void setup() float xCoord, yCoord;
{ float diameter;
size (100,100); int red, green, blue;
noStroke();
sp = new Spot(33, 50, 30); // constructors...
} // display method...
// colour methods...
void draw() // move methods...
{
background(0);
sp.colour(255, 0, 0); Before refactoring,
sp.diameter = 30000; we directly accessed the diameter field...
sp.display(); this broke Encapsulation rules.
}

Source: Reas & Fry (2014)

Refactoring Spot 7.0 — getters and setters

class Spot{

A\

Spot sp;

void setup()

{
size (100,100);
noStroke();
sp = new Spot(33, 50, 30);

}

void draw()

{
background(0);

sp.colour(255, 0, 0);
Sp.setDiameter(30000);
sp.display();

private float xCoord, yCoord;
private float diameter;
private int red, green, blue;

// constructors...

// display method...
// colour methods...
// move methods...

//getter methods...

//setter methods...

_—public void setDiameter(float diameter){
~__this.diameter = diameter; _—

}
}

) Now we update via the appropriate setter

Review — Encapsulation steps

We have:

* Wrapped the fields & methods into a single unit
* Hidden our fields (they are private)

* Implemented getter and setter methods

— to view/update the fields.

1. Wrap the data (fields)
and code acting on the
data (methods)
together as single unit.

Enforced the Encapsulation rules [t

3. Access the fields only
through the methods of
their current class.

But Our Design Still Smells!

BECAUSE

We can still set the field values to
undesirable values...e.g. 30000

- We need validation!

Topics list

1
2.
3.
4

Recap: Version 6.1
Our design smells!
Encapsulation
Refactoring Spot:

— Access Modifiers
— Accessors and Mutators

— Validation

Improving the constructor

Spot (float xCoord, float yCoord, float diameter)
{

this.xCoord = xCoord;
this.yCoord = yCoord;

this.diameter = diameter;

Current constructor
with no validation.

Improving the constructor

Spot (float xCoord, float yCoord, float diameter)
{
this.xCoord = xCoord;
this.yCoord = yCoord;
if ((diameter >= 20) && (diameter <= 50)) {
this.diameter = diameter;

}

Slsef —— Updated constructor
this.diameter = 20; > with some validation.

}

}

\

Note: in the constructor, you typically set the field
to a default value if invalid data was entered.

Improving the setter / mutator

public void setDiameter (float diameter) {
if ((diameter >= 20) && (diameter <= 50)) {
this.diameter = diameter;

}

Note: The validation done at constructor level
must be repeated at setter level for that field

— data integrity!

However, in setter methods, you typically do not update
the field’s value if invalid data was entered

(no “else” branch).

Summary - Encapsulation (data hiding)

Hide fields

— Access them only through
methods of the class
e.g. getters & setters

Make the

— class public
— and the fields private

4 Access Levels
(2 for processing)
— package

— private

— public

— Protected

Accessors

— get

Mutators

— set

Write a getter & setter for
each each field

Validation

— Test min / max values
— Must apply in constructor
* Apply default if value fails

— Must also apply in setter
* |Ignore the update if value fails

Summary continued

Encapsulation — Steps
1. Wrap Fields & Methods in single file

2. Hide the fields from other classes using
private

3. Access only through getter & setters
4. Apply validation in constructors & setters

Questions?

References

e Reas, C. & Fry, B. (2014) Processing — A
Programming Handbook for Visual Designers
and Artists, 2" Edition, MIT Press, London.

