
Game	of	Pong

Produced	
by:

Department	of	Computing	and	Mathematics
http://www.wit.ie/

V3,	V4	and	V5

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V3.0



Classes	in	the	PongGameV3.0
Ball

xCoord
yCoord
diameter
speedX
speedY
Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame

ball
paddle
setup()
draw()
hitPaddle (paddle,	ball)

Ball	and	Paddle	classes	à no	change

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

In	PongGame,	draw()	is	updated	to	
call	the	new	hitPaddle()method.	

hitPaddle uses	a	collision	detection
algorithm	
• if	the	paddle	and	ball	are	touching

• returns	true
• false	otherwise.



Collision	Detection	Algorithm

Method	signature:
boolean hitPaddle (Paddle	paddle,	Ball	ball)

Algorithm:
1)	Measure	the	size	of	the	gap	between	the	paddle	and	the	ball.	

2)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	X	axis	to	have	a	collision	
à return	false

3)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision	
à return	false

4)	Otherwise	
à return	true.



1)	Measuring	size	of	the	gap	
between	the	paddle	and	ball.

We	need	to	first	calculate	how	far	away	the	ball	is	
from	the	paddle	on	both	the	x	and	the	y	axis	e.g.:	

circleDistanceX

circleDistanceY

circleDistanceX

circleDistanceY

circleDistanceX

circleDistanceY

circleDistanceY
circleDistanceX



boolean hitPaddle (Paddle	paddle,	Ball	ball)
{

//These	variables	measure	the	magnitude	of	the	gap	between	the	paddle	and	ball.
float	circleDistanceX

=	abs(ball.getXCoord()	- paddle.getXCoord());
float	circleDistanceY

=	abs(ball.getYCoord()	- paddle.getYCoord()	- paddle.getPaddleHeight()/2);

}

circleDistanceX

circleDistanceY

1)	Measuring	size	of	the	gap	
between	the	paddle	and	ball.



Collision	Detection	Algorithm

Method	signature:
boolean hitPaddle (Paddle	paddle,	Ball	ball)

Algorithm:
1)	Measure	the	size	of	the	gap	between	the	paddle	and	the	ball.	

2)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	X	axis	to	have	a	collision	
à return	false

3)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision	
à return	false

4)	Otherwise	
à return	true.



2)	If	ball	is	too	far	away	from	the	Paddle	
on	the	X	axis	à return	false

//The	Ball	is	too	far	away	from	the	Paddle	on	the	X	axis
//	to	have	a	collision,	
//	so	abandon	collision	detection

if	(circleDistanceX >	(ball.getDiameter()/2))	{
return	false;

}

If	ball	is	too	far	away	from	the	Paddle	
on	the	X	axis	à return	false



Collision	Detection	Algorithm

Method	signature:
boolean hitPaddle (Paddle	paddle,	Ball	ball)

Algorithm:
1)	Measure	the	size	of	the	gap	between	the	paddle	and	the	ball.	

2)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	X	axis	to	have	a	collision	
à return	false

3)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision	
à return	false

4)	Otherwise	
à return	true.



//The	Ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision,	
//so	abandon	collision	detection

if	(circleDistanceY >	
(paddle.getPaddleHeight()/2	+	ball.getDiameter()/2))	{

return	false;	
}

If	ball	is	too	far	away	from	the	Paddle	
on	the	Y	axis	à return	false

3)	If	ball	is	too	far	away	from	the	Paddle	
on	the	Y	axis	à return	false



Collision	Detection	Algorithm

Method	signature:
boolean hitPaddle (Paddle	paddle,	Ball	ball)

Algorithm:
1)	Measure	the	size	of	the	gap	between	the	paddle	and	the	ball.	

2)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	X	axis	to	have	a	collision	
à return	false

3)	If	the	ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision	
à return	false

4)	Otherwise	
à return	true.



//We	have	a	collision
return	true;

We	have	a	collision

4)	Otherwise return	false



boolean hitPaddle (Paddle	paddle,	Ball	ball)
{
//These	variables	measure	the	magnitude	of	the	gap	between	the	paddle	and	ball.
float	circleDistanceX

=	abs(ball.getXCoord()	- paddle.getXCoord());
float	circleDistanceY

=	abs(ball.getYCoord()	- paddle.getYCoord()	- paddle.getPaddleHeight()/2);

//The	Ball	is	too	far	away	from	the	Paddle	on	the	X	axis	to	have	a	collision,	
//so	abandon	collision	detection
if	(circleDistanceX >	(ball.getDiameter()/2))	{
return	false;

}

//The	Ball	is	too	far	away	from	the	Paddle	on	the	Y	axis	to	have	a	collision,	
//so	abandon	collision	detection
if	(circleDistanceY >	(paddle.getPaddleHeight()/2	+	ball.getDiameter()/2))	{
return	false;	

}
//We	have	a	collision
return	true;

}
hitPaddle()

1

2

3

4



hitPaddle (paddle,	ball)	method

• Call	the	hit (ball,	paddle)	method	
from	the	draw()	method	in	our	main	PongGame class.
void	draw (){
background(0);							//Clear	the	background
paddle.update();				//Update	the	paddle	location	in	line	with	the	cursor
paddle.display();				//Draw	the	paddle	in	this	new	location	
ball.update();									//	update	the	ball	position.
ball.display();									//Draw	the	ball	at	its	new	location

//Set	variable	to	true	if	ball	and	paddle	are	overlapping,	false	if	not	
boolean collision =	hitPaddle (paddle,	ball);

if	(collision	==	true){
ball.hit(); //the	ball	is	hit	 i.e.	reverse	direction.

}
}



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V4.0



PongGameV4.0

• This	version	stores	game	information:
– The	number	of	lives lost
– The	maximum	lives allowed	per	game	
– The	score of	the	game

• Game	Over
– when	user	loses	the	number	of	lives	allowed	per	game.

• Changes	
– None	in	the	Ball	and	Paddle	class
– All	changes	in	PongGameV4.0	class.	



Classes	in	the	PongGameV4.0

Ball

xCoord
yCoord
diameter
speedX
speedY
Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame

ball
Paddle
livesLost
score
maxLivesPerGame
setup()
draw()
hitPaddle(paddle,	ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)



PongGameV4.0	class	– global	fields

//Current	game	data
int livesLost =	0;																				//keeps	track	of	number	of	lives	lost	in	current	game
int score =	0;																										//high	score	of	the	current	game
intmaxLivesPerGame =	3;			//maximum	number	of	lives	that	can	be	lost	

//before	the	game	ends



PongGameV4.0	class	– draw()

//	Update	the	ball	position.		If	true	is	returned,	the	ball	has	left	the	display	window			
//	i.e.	a	life	is	lost
if	(ball.update()	==	true){

livesLost++;
println("Lives	lost:		"		+	livesLost);

}

//	Update	the	ball	position.	
ball.update();

Version	3.0

Version	4.0



PongGameV4.0	class	– draw()

//Draw	the	ball	at	its	new	location	and	check	for	a	collision	with	the	paddle
ball.display();				

//Set	variable	to	true	if	ball	and	paddle	are	overlapping,	false	if	not	
boolean collision	=	hitPaddle (paddle,	ball);

if	(collision	==	true){
ball.hit();								//the	ball	is	hit	i.e.	reverses	direction.

}

Version	3.0



PongGameV4.0	class	– draw()
//If	the	player	still	has	a	life	left	in	the	current	game,	
//draw	the	ball	at	its	new	location	and	check	for	a	collision	with	the	paddle
if	(livesLost <	maxLivesPerGame){	
ball.display();		

//Set	variable	to	true	if	ball	and	paddle	are	overlapping,	false	if	not	
boolean collision	=	hitPaddle(paddle,	ball);
if	(collision	==	true){
ball.hit();					//the	ball	is	hit	i.e.	reverses	direction.
score++;						//increase	score	in	the	current	game	by	1,	if	the	player	hit	the	ball.
println("Score:		"		+	score);

}
}
//The	player	has	no	lives	left	so	the	game	ends
else{

println("Game	Over!");
println("You	have	lost	all	of	your	lives:		"		+	livesLost);
println("Your	final	score	is:		"		+	score);	
exit();					

}

Version	4.0



PongGameV4.0	– sample	output



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V5.0



PongGameV5.0

• This	version	stores	tournament	information:
– The	number	of	games	in	a	tournament.
– The	number	of	games	played	so	far.

• If	the	number	of	games	in	the	tournament	is	over,	
end	the	program.	

• Changes	
– None	in	the	Ball	and	Paddle	class
– All	changes	in	PongGameV5.0	class.	



Classes	in	the	PongGameV5.0

Ball

xCoord
yCoord
diameter
speedX
speedY
Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame

ball
Paddle
livesLost
score
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()
resetGame()
tournamentOver()
hitPaddle(paddle,	ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)



PongGameV5.0	class	– global	fields

//Tournament	data
intmaxNumberOfGames =	5;						//maximum	number	of	games	in	a	tournament
int numberOfGamesPlayed =	0;		//num of	games	played,	so	far,	in	a	tournament



PongGameV5.0	class	– draw

//If	the	player	still	has	a	life	left	in	the	current	game,	
//draw	the	ball	at	its	new	location	and	check	for	a	collision	with	the	paddle
if	(livesLost <	maxLivesPerGame){	
//displays	the	ball	code
//if	the	ball	and	paddle	are	overlapping,	hit	the	ball	and	increase	the	score	by	1

}
//The	player	has	no	lives	left	so	the	game	ends
else{

println("Game	Over!");
println("You	have	lost	all	of	your	lives:		"		+	livesLost);
println("Your	final	score	is:		"		+	score);	
exit();					

}

Version	4.0



PongGameV5.0	class	– draw
//If	the	player	still	has	a	life	left	in	the	current	game,	
//draw	the	ball	at	its	new	location	and	check	for	a	collision	with	the	paddle
if	(livesLost <	maxLivesPerGame){	

//displays	the	ball	code
//if	the	ball	and	paddle	are	overlapping,	hit	the	ball	and	increase	the	score	by	1

}
//The	player	has	no	lives	left	so	the	game	ends
else{

numberOfGamesPlayed++;								
//If	the	player	has	more	games	left	in	the	tournament,	
//display	their	score	and	ask	them	if	they	want	to	continue	with	tournament.
if	(numberOfGamesPlayed <	maxNumberOfGames)

resetGame();
else

//the	player	has	no	more	games	left	in	the	tournament
tournamentOver();

}

Version	5.0



PongGameV5.0	class	– resetGame()

//	method	prepares	for	the	next	game	by	resetting	the	variables	//	
that	store	the	current	game	information.
void	resetGame()
{

println("Game	Over!");
println("Starting	a	new	game...");
livesLost =	0;						//resets	the	lives	lost	in	the	current	game	to	zero
score	=	0;												//resets	the	score	of	the	current	game	to	zero

}



PongGameV5.0	class	– tournamentOver ()

//	method	displays	the	player	information,	before	exiting	
//	the	program.
void tournamentOver ()
{

println("Game	Over!");
println("Tournament	Over!");
exit();		

}



PongGameV5.0	– sample	output

Starting	a	new	game...
Lives	lost:		1
Score:		1
Score:		2
Lives	lost:		2
Lives	lost:		3
Game	Over!
Tournament	Over!

Score:		1
Score:		2
Lives	lost:		1
Score:		3
Lives	lost:		2
Score:		4
Lives	lost:		3
Game	Over!
Starting	a	new	game...
Lives	lost:		1
Lives	lost:		2
Lives	lost:		3
Game	Over!

Starting	a	new	game...
Score:		1
Score:		2
Lives	lost:		1
Score:		3
Lives	lost:		2
Lives	lost:		3
Game	Over!
Starting	a	new	game...
Score:		1
Lives	lost:		1
Score:		2
Lives	lost:		2
Lives	lost:		3
Game	Over!

5	games	in	tournament
3	lives	in	a	game



Questions?



References

• Reas,	C.	&	Fry,	B.	(2014)	Processing	– A	
Programming	Handbook	for	Visual	Designers	
and	Artists,	2nd Edition,	MIT	Press,	London.


