
Game	of	Pong

Produced	
by:

Department	of	Computing	and	Mathematics
http://www.wit.ie/

Developing	the	game	further,	V6,	V7	and	V8.

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V6.0



Classes	in	the	PongGameV6.0
Ball

xCoord
yCoord
diameter
speedX
speedY

Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame
ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

Player

playerName
scores
count

addScore(int)
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
toString()

We	have	a	new	Player class.	

This	stores	the	score of	the	current	player	in	an	array



Use	of	Arrays in	Player

• We	use	an	array	of	integers	
– to	hold	the	scores for	the	games.

• declare	at	start:		
private	int[] scores;

• and	in	constructor:	
scores =	new int[numOfGames]

• The	addScore()	method	
– adds	a	score	to	this	array	when	called	(by	PongGame).



Player class

private	String	playerName;		
private	int[]	scores;			 //array	to	hold	scores
private	int count;						 //holds	current	position	

//in	array

Player
playerName
scores
count
addScore(int)
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
toString()

getters	and	setters	for	fields above

private fields



Player	class	– addScore()method
public	void	addScore (int score)		{					
if	(score	>=	0){									

scores[count]	=	score;									
count++;					

}	
}	

Player
playerName
scores
count
addScore (int)
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
toString()

addScore (int)
• takes	in	the	new	score as	a	parameter.	
• adds	the	new	score	to	the	array	
• increments	the	counts variable	

0 4

1 5

2
3

scores

2

count

Before

3
score+

0 4

1 5

2 3

3

3

count

After



Player	class	– toString()method
public	String	toString ()		{				
String	str =	"Scores	for	"	+	playerName +	"\n";																		
for(int i =	0;	i <	count;	i++){								

str =	str +	"					Score	"	+	(i+1)	+	":	"	+	
scores[i]	+	"\n";						

}								
return	str;				

}

Player
playerName
scores
count
addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
toString()

toString()
• returns	a	string	version	of	an	object.	
• useful	method	

• we	will	have	a	toString()	method	
in	most	classes.

0 4

1 5

2 3

3 4

scores

count

4

“Score	1	:	4	\n”+
“Score	2	:	5	\n”+
“Score	3	:	3	\n”	+	
“Score	4	:	4\n”

toString()	
returns



When	is	the	Player object	used?	
Ball	ball;
Paddle	paddle;
Player	player;
:
void	setup(){
size(600,600);
noCursor();
//setting	up	ball	and	paddle	with	hard-coded	sizes.
ball	=	new	Ball(20.0);
paddle	=	new	Paddle(20,100);
//create	a	player	object				
player	=	new	Player("		PongMaster ",	maxNumberOfGames);

}

Need	to	declare	
and	setup	Player



When	is	the	Player object	used?	
void	draw(){
background(0);	
paddle.update();	
:
//If	the	player	has	no	lives	left	in	the	current	game			
else{						
player.addScore(score);
numberOfGamesPlayed++;.					
if	(numberOfGamesPlayed <	maxNumberOfGames){																			

resetGame();						
}					
else
tournamentOver();				

}

‘Sends	a	message	to	the	player	object	
to	add	a	new	score	to	its	scores	array.’	
i.e.	
calls	the	addScores()	method.



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V7.0



Classes	in	the	PongGameV7.0
Ball

xCoord
yCoord
diameter
speedX
speedY

Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame
ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

Player

playerName
scores
count

addScore(int)
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We	introduce	calculating	simple	stats
on	a	player’s	tournament.

These	are	reported	at	the	end	of	the	tournament.



Methods	to	calculate	statistics

• When	the	players	tournament	is	over,	we	calculate	the	player’s
• highest score
• lowest score.
• average score.

• Values	are	calculated	within	the	Player	class	
• as	we	have	enough	data	there	to	do	this	(scores	array).

• These	methods	are	then	called	from	the	tournamentOver()
method	in	the	PongGame class.	



highestScore()
public	int highestScore ()		{

int highestScore =	scores[0];	

for(int i =	1;	i <	count;	i++){									
if	(scores[i]	>	highestScore){											

highestScore =	scores[i];								
}												

}								
return	highestScore;		
}

Player

playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We	use	a	variable	(highestScore)	to	store	the	highest	
score	we	have	seen	in	the	scores	array	so	far.	

If	the	next	value	in	the	array	is	larger	than	this	
highest	so	far	value,	then	we	make	the	highest	value	
equal	this	new	highest	value.		



lowestScore()
public	int lowestScore()		{			

int lowestScore =	scores[0];			

for(int i =	1;	i <	count;	i++){									
if	(scores[i]	<	lowestScore){											

lowestScore =	scores[i];								
}												

}								
return	lowestScore;		
}

Player

playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We	use	a	variable	(lowestScore)	to	store	the	lowest	
score	we	have	seen	in	the	scores	array	so	far.	

If	the	next	value	in	the	array	is	smaller	than	this	
lowest	so	far	value,	then	we	make	the	lowest	value	
equal	this	new	lowest	value.		



averageScore()
public	int averageScore()		{

int total	=	0;				

for(int i =	0;	i <	count;	i++){							
total	=	total	+		scores[i];										

}							

return	total	/	count;	
}

Player

playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We	total	up	all	the	scores	and	get	the	average	by	
dividing	the	sum	by	the	number	of	values	(in	count).



Where	the	stats	methods	are	used…
void	tournamentOver(){			
println ("Game	Over!\n");			
println (player.getPlayerName()	

+	",	your	tournament	is	over!\n"																																		
+	"Number	of	games	played:	”
+	numberOfGamesPlayed
+	"\n\n"																					
+		player.toString()																											
+	"\n\nHighest Score:	"		+	player.highestScore()																					
+			"\nLowest Score:		”			+		player.lowestScore()																																	
+			"\nAverage Score:	"		+	player.averageScore());				

exit();							
}

This	method	calls	the	stats	methods	on	the	player	object:
player.highestScore
player.lowestScore
player.averageScore

PongGame
ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)



A	few	things	to	note

• We	did	not	need	to	change	any	methods	in	
Paddle	or	Ball	during	this	version	update.

• The	changes	to	Player	and	PongGame methods	
did	not	effect	the	other	methods	already	
written.	



Topics	list	- PONG
• Overview of	PongGame
• Developing	PongGame

– 9	versions	(iterations)	described	with	4	sets	of	slides:
– Set	1

• V1.0	(Ball	class)
• V2.0	(Paddle	class)

– Set	2
• V3.0	(Collision	detection)
• V4.0	(Lives	lost,	lives	per	game,	score)
• V5.0	(Tournament	functionality)

– Set	3
• V6.0	(Player	class	– array,	no	statistics)
• V7.0	(Player	class	– array,	with	statistics)
• V8.0	(JOptionPane for	I/O)

– Set	4
• V9.0	(JOptionPane for	I/O)

Idea	is	based	on	Reas and	Fry	(2014)	example



Demo	of	
Pong	Game	V8.0



Classes	in	the	PongGameV8.0
Ball

xCoord
yCoord
diameter
speedX
speedY

Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame
ball
Paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int,	int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

Player
playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

JOptionPane allows	user	input,	during	the	running	of	the	program.	

We	use	this	input	to	make	changes	in	the	game.	



A	few	things	to	note

• We	only	use	data	input	or	data	output	in	the	
PongGame(Driver)	class.	

• This	is	to	ensure	that	the	‘user	of	classes’	
(PongGame)	gets	to	decide	how	the	data	is	input	
and	output.	

• This	is	why	toString()	is	useful	
– it	returns	a	string	version	of	an	object	of	a	class	
– then	the	user	can	decide	how	to	show	it	
e.g.	on	the	console	or	via	JOptionPane.	



import	JOptionPane

import	javax.swing.*;

//Objects	required	in	the	program
Ball	ball;
Paddle	paddle;
Player	player;
:

In	order	to	use	JOptionPane,	
we	must	import	swing	at	the	top	of	the	file.	

PongGame
ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)



Reading	in	maxNumberofGames

PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

int maxNumberOfGames;	
//code	omitted
maxNumberOfGames =					

Integer.parseInt (JOptionPane.showInputDialog(
"Welcome	to	the	Pong	Tournament\n\n
Please	enter	the	number	of	games	you	would	like	to	play:",
"3"));		

player	=	new	Player	(JOptionPane.showInputDialog(
"Enter	the	player	name	(max	6	chars:	"),	maxNumberOfGames);



Reading	in	maxNumberofGames

PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

int maxNumberOfGames;	
//code	omitted
maxNumberOfGames =					

Integer.parseInt(JOptionPane.showInputDialog(
"Welcome	to	the	Pong	Tournament\n\n
Please	enter	the	number	of	games	you	would	like	to	play:",
"3"));		

player	=	new	Player	(JOptionPane.showInputDialog("Enter	the	player	
name	(max	6	chars:	"),	maxNumberOfGames);

maxNumberOfGames is	read	in



Reading	in	maxNumberofGames

PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

int maxNumberOfGames;	
//code	omitted
maxNumberOfGames =					

Integer.parseInt(JOptionPane.showInputDialog(
"Welcome	to	the	Pong	Tournament\n\n
Please	enter	the	number	of	games	you	would	like	to	play:",
"3"));		

player	=	new	Player (JOptionPane.showInputDialog("Enter	the	player	
name	(max	6	chars:	"),	maxNumberOfGames);

The	Player	constructor	is	called	and	the	JOptionPane
input	is	passed	into	the	constructor.



Adding	choice	during	the	game

• Having	read	in	the	maximum	number	of	games	a	
player	can	have,	
the	player	is	asked	at	the	end	of	each	game	
if	they	wish	to	continue.
– If	they	choose	to	end,	their	tournament	is	over.	

• When	max	number	of	games	as	read	in,	is	reached
– they	will	finish	without	being	asked.	



Adding	choice	during	the	game
//If	the	player	has	no	lives	left	in	the	current	game			
else{

//add	the	score	of	the	current	game	to	the	array	in	player
player.addScore(score);			
numberOfGamesPlayed++;								
//If	the	player	has	more	games	left	in	the	tournament,	
//display	their	score	and	ask	them	if	they	want	to	
//continue	with	the	tournament.
if	(numberOfGamesPlayed <	maxNumberOfGames){
resetGame();

}
else{
//the	player	has	no	more	games	left	in	the	tournament	
tournamentOver();

}

V7 PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)



Adding	choice	during	the	game
PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

//If	the	player	has	no	lives	left	in	the	current	game			
else{						

player.addScore(score);						
numberOfGamesPlayed++;	
if	(numberOfGamesPlayed <	maxNumberOfGames){					

int reply	=	JOptionPane.showConfirmDialog(null,		
"Game	Over!	You	scored	"	+	score	+	
".\nWould you	like	to	play	the	next	game	in	your	 tournament?",												
"Play	next	game?",	JOptionPane.YES_NO_OPTION);									

if	(reply	==	JOptionPane.YES_OPTION){
resetGame();	

}								
else{

tournamentOver();							
}								

}
}

We	added	extra	functionality	here,	
based	on	our	new	field	
maxNumberOfGames and	
JOptionPane.

V8



JOptionPane for	output
PongGame

ball
paddle
player
livesLost
score	
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed

setup()
draw()	
resetGame()	
tournamentOver()	
hitPaddle(paddle,	ball)

void	tournamentOver ()
{						

JOptionPane.showMessageDialog(null,	
player.getPlayerName()	+	
",	your	tournament	is	over!	\n\n"					+
"Number	of	games	played:	"	+	
numberOfGamesPlayed +	"\n\n”+
player.toString()		+	
"\n\nHighest Score:	”	+	player.highestScore()		+
"\nLowest Score:		"						+	player.lowestScore()				+
"\nAverage Score:	"						+	player.averageScore());							

exit();							
}

The	same	data	is	being	output,	just	in	a	better	way…
we	are	using	JOptionPane instead	of	the	console.



Questions?



References

• Reas,	C.	&	Fry,	B.	(2014)	Processing	– A	
Programming	Handbook	for	Visual	Designers	
and	Artists,	2nd Edition,	MIT	Press,	London.


