
Grouping	Objects	(lecture	2	of	2)

Produced	by:

(based	on	Ch.	4,	Objects	First	with	Java	- A	Practical	Introduction	using	BlueJ,	©	David	J.	Barnes,	Michael	Kölling)

Department	of	Computing	and	Mathematics
http://www.wit.ie/

ArrayList and	Iteration

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor
Dr. Frank	Walsh



Topic	list
• Grouping	Objects	
– Developing	a	basic	personal	notebook	project	using	
Collections	e.g.	ArrayList

• Indexing	within	Collections
– Retrieval	and	removal	of	objects	

• Generic	classes	e.g.	ArrayList
• Iteration
– Using	the	for	loop
– Using	the	while	loop
– Using	the	for	each	loop

• ShopV3.0 – use	an	ArrayList of	Products	
instead	of	an	array.



RECAP:Summary Shop	V2.0

Product class	stores	details	of	a	product’s	name,	code,	unit	cost	
and	whether	it	is	in	the	current	product	line	or	not.

Driver

Product

Store
Some changes	

new	class

No changes

v2

JVM



RECAP:Summary Shop	V2.0

Store class	maintains	a	collection	of	Products
i.e.	an	array	of	Products;		store.Products[]

Driver

Product

Store
Some changes	

new	class

No changes

v2

JVM



RECAP:Summary Shop	V2.0

Driver allows	the	user	to	decide	how	many	product	details	they	
want	to	store.	
Methods	updated	to	work	with	this	new	store.Products[]	array

Driver

Product

Store
Some changes	

new	class

No changes

v2

JVM



Shop	V3.0

GOAL:	use	an	ArrayList of	Products	
instead	of	an	array.

v3



Shop	V3.0 – changes to	classes (refactoring)

Refactor:
any	changes	to	the	
Store “interface”	
are	reflected	in	

this	class

Driver

Product

Store

No changes

JVM

Refactor:
to	an	ArrayList of	Product
from	storing	Products	in	an	array	



PRODUCT
Let’s	Look	At

Product
No changes



The	Product Class
Product

Constructor

getters

setters

toString

fields



Our	Product	class	contains	
four	fields	- instance	variables	

Product



The	constructor uses	the	data	
passed	in	the	four	parameters	
to	update	the	instance	fields.

Product

Name	Overloading	using	this.



The	class	has	getters	
for	each	instance	field.

Product

public String getProductName(){
return productName;

}

public double getUnitCost(){
return unitCost;

}

public int getProductCode() {
return productCode;

}

public boolean isInCurrentProductLine() {
return inCurrentProductLine;

}



The	class	has	setters	
for	each	instance	field.

Product

public void setProductCode(int productCode) {
this.productCode = productCode;

}

public void setProductName(String productName) {
this.productName = productName;

}

public void setUnitCost(double unitCost) {
this.unitCost = unitCost;

}

public void setInCurrentProductLine(boolean inCurrentProductLine) {
this.inCurrentProductLine = inCurrentProductLine;

}



The	class	has	a	toStringmethod	
to	return	a	String	

containing	a	user-friendly	representation	
of	the	object	state.

We	will	call	this	method	from	the	Store class	
that	we	will	construct	over	the	next	few	slides.

Product

public String toString()
{

return "Product description: " + productName
+ ", product code: " + productCode
+ ", unit cost: " + unitCost
+ ", currently in product line: " + inCurrentProductLine;

}



Store

STORE
Let’s	Look	At

Refactor:
to	an	ArrayList of	Product
from	storing	Products	in	an	array	



Store

1	field

Constructor

methods



Store	class	- Fields

• The	Store	class	now	has	just	one	field	called	
products
– an	ArrayList of	Product.	

Store



1.	Declaring	an	ArrayList of	Product

import	java.util.ArrayList;

public	class	Store
{

private	ArrayList<Product>	products;

//	constructor
public	Store()
{
products	=	new	ArrayList<Product>	();

}

}

importing	the	
ArrayList class	so	
we	can	use	it.

declaring	an	
ArrayList of	
Product	as	a	
private	instance	
variable.

calling the	
constructor	of	the	
ArrayList class	to	
build	the	ArrayList
object.	

Store

NOTE	THE	SYNTAX



Store	class	–Methods	(1)

These	methods	work	on	the	ArrayList to:

1. add Products
2. print	out	the	contents
3. print	out	the	cheapest	product

Store



Add a	product object	
to	an	ArrayList of	Product

public	void	add (Product product)
{

products.add (product);
}

The	ArrayList
holds	objects	of	this	type	

This	is	an	object	variable	
of	type	Product	
that	we	want	to	add	
to	the	ArrayList.

This	is	the	ArrayList of	Product.	

This	is	the	.add()method	
from	the	ArrayList class that	we	just	imported.	

Store



Add a	product object	
to	an	ArrayList of	Product

import	java.util.ArrayList;

public	class	Store{

private	ArrayList<Product>	products;

public	Store(){
products	=	new	ArrayList<Product>	();

}

public	void	add (Product	product){
products.add (product);

}
}

Store



Store	class	–Methods	(2)

These	methods	work	on	the	ArrayList to:

1. add Products
2. print	out	the	contents
3. print	out	the	cheapest	product

Store



Print	out	the	contents

public String listProducts() {
if (products.size() == 0) {

return "No products";
} else {

String listOfProducts = "";
for (int i = 0; i < products.size(); i++) {

listOfProducts += i + ": " + products.get(i) + "\n";
}
return listOfProducts;

}
}

If	the	size	of	the	products	ArrayList is	zero,	
return	the	String	“No	products”	to	the	Driver	class	to	be	printed.

Store

If	there	are	products	in	the	ArrayList…
return	a	String	containing	the	index	number	of	each	product	&	the	product	details.

Sample	Output



Store	class	–Methods	(3)

These	methods	work	on	the	ArrayList to:

1. add Products
2. print	out	the	contents
3. print	out	the	cheapest	product

Store



Finding	the	Cheapest	Product

Product

getter

private	field	– unit	cost



1. If	products	have	been	added	to	the	ArrayList
1.1	 Assume	that	the	first	Product	in	the	ArrayList is	the	cheapest	

(set	a	local	variable	to	store	this	object).
1.2			For	all	product	objects	in	the	ArrayList

1.2.1			if	the	current	product	cost	is	lower	than	the	cost	of								
the	product	object	stored	in	the	local	variable,	

1.2.1.1		update	the	local	variable	to	hold	the	
current	product	object.

end	if
end	for

1.3	Return	the	name	of	the	cheapest	product.
else	
1.4	Return	a	message	indicating	that	no	products	exist.
end	if		

Finding	the	Cheapest	Product	–
Algorithm	(numbered	steps)

Store



Finding	the	Cheapest	Product	
(step	1.)

if	products	have	been	added	to	the	ArrayList
//	return	the	cheapest	product

else	
return	a	message	indicating	that	no	products	exist.

end	if		

Q:	How	do	we	write	the	code	for	this	
algorithm?

Working	on	the	outer	if	statement	(step	1.)

Store



if (products.size() != 0){
//return the cheapest product

}
else{

return “No products are in the ArrayList”;
}

Store



Working	on	step	1.1

if	products	have	been	added	to	the	ArrayList
//	1.1			Assume	that	the	first	Product	in	the	ArrayList is	the	 cheapest	
//	(set	a	local	variable	to	store	this	object).

else	
return	a	message	indicating	that	no	products	exist.

end	if		

Q:	How	do	we	write	the	code	for	this	
step?

Store



if (products.size() != 0){
Product cheapestProduct = products.get(0);

}
else{

return “No products are in the ArrayList”;
}

step	1.1
Store



Working	on	the	for	loop	step	1.2

if	products	have	been	added	to	the	ArrayList
//	1.1			Assume	that	the	first	Product	in	the	ArrayList is	the	cheapest	
//	(set	a	local	variable	to	store	this	object).
//	1.2			For	all	product	objects	in	the	ArrayList
//										determine	the	cheapest	product
//		end	for

else	
return	a	message	indicating	that	no	products	exist.

end	if		

Q:	How	do	we	write	the	code	for	this	
step?

Store



step	1.2

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)
{
}

}
else{

return “No products are in the ArrayList”;
}

Store



for	each	loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)
{
}

}
else{

return “No products are in the ArrayList”;
}

Product:		This	is	the	
type	of	object	that	
is	stored	in	the	
ArrayList.

product:	This	is	the	reference	to	the	
current	object	we	are	looking	at	in	the	
ArrayList.		As	we	iterate	over	each	object	
in	the	ArrayList,	this	reference	will	change	
to	point	to	the	next	object,	and	so	on.

products:	This	
is	the	ArrayList
of	Product.	

Store



Store step	1.2.1
1. If	products	have	been	added	to	the	ArrayList

1.1	 Assume	that	the	first	Product	in	the	ArrayList is	the	cheapest	
(set	a	local	variable	to	store	this	object).

1.2			For	all	product	objects	in	the	ArrayList
1.2.1			if	the	current	product	cost	is	lower	than	the	cost	of								

the	product	object	stored	in	the	local	variable,	
1.2.1.1		update	the	local	variable	to	hold	the	

current	product	object.
end	if

end	for
1.3	Return	the	name	of	the	cheapest	product.
else	
1.4	Return	a	message	indicating	that	no	products	exist.
end	if		

Q:	How	do	we	write	the	code	for	this	step?



step	1.2.1

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost())
{
} 

}
}
else
{

return “No products are in the ArrayList”;
}

Store



Step	1.2.1.1

Q:	How	do	we	write	the	code	for	this	step?

Store

1. If	products	have	been	added	to	the	ArrayList
1.1	 Assume	that	the	first	Product	in	the	ArrayList is	the	cheapest	

(set	a	local	variable	to	store	this	object).
1.2			For	all	product	objects	in	the	ArrayList

1.2.1			if	the	current	product	cost	is	lower	than	the	cost	of								
the	product	object	stored	in	the	local	variable,	

1.2.1.1		update	the	local	variable	to	hold	the	
current	product	object.

end	if
end	for

1.3	Return	the	name	of	the	cheapest	product.
else	
1.4	Return	a	message	indicating	that	no	products	exist.
end	if		



Step	1.2.1.1

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

} 
}

}
else{

return “No products are in the ArrayList”;
}

Store



Working	on	the	last	step,	1.3

1. If	products	have	been	added	to	the	ArrayList
1.1	 Assume	that	the	first	Product	in	the	ArrayList is	the	cheapest	

(set	a	local	variable	to	store	this	object).
1.2			For	all	product	objects	in	the	ArrayList

1.2.1			if	the	current	product	cost	is	lower	than	the	cost	of								
the	product	object	stored	in	the	local	variable,	

1.2.1.1		update	the	local	variable	to	hold	the	
current	product	object.

end	if
end	for

1.3	Return	the	name	of	the	cheapest	product.
else	
1.4	Return	a	message	indicating	that	no	products	exist.
end	if		

Q:	How	do	we	write	the	code	for	this	step?

Store



step,	1.3

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

} 
}
return cheapestProduct.getProductName(); 

}
else{

return “No products are in the ArrayList”;
}

Store



DRIVER
Let’s	Look	At

Refactor:
any	changes	to	the	
Store “interface”	
are	reflected	in	

this	class

Driver

JVM



Store

Constructor



store = new Store(numberProducts);

store = new Store();

Previously	our	Shop	used	an	
array	and	we	needed	to	know	
how	many	Products	to	store:

Driver
JVM

Now	that	we	are	using	an	ArrayList,	
we	don’t	need	to	set	a	capacity,	so	
our	constructor	call	becomes:



Driver
JVM

Next	Time,	we’ll	add	a	menu	system	in	the	Driver	class.

Right	now,	the	user	has	no	control	over	whether	they	
want	to	add,	list,	etc products	i.e.:



Collections
• Allow	an	arbitrary	number	of	objects	to	be	stored.

• Are	implemented	in	Java’s	Class	libraries	
which	contain	tried-and-tested	collection	classes.

• In	Java’s	class	libraries	are	called	packages.

• We	have	used	the	ArrayList class	from	the	
java.util package.



ArrayList
• Items	may	be	added	and	removed.

• Each	item	has	an	index.

• Index	values	may	change	if	items	are	removed	
(or	further	items	added).

• The	main	ArrayListmethods	are:
– add()
– get()
– remove()
– size()

• ArrayList is	a	parameterized	or	generic	type.



Questions?


