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Instance vs	Static (Class)	Variables

Instance
Multiple	objects	created	from	
the	same	class	blueprint,	
• each	have	their	own	distinct	

copies	of instance	variables.

Static
For	variables that	are	common	
to	all	objects	(instances)
• Use	the staticmodifier.	

Fields	that	have	
the static modifier	in	their	
declaration	are	called:
• static	fields
• or

class	variables.

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html



Instance vs	Static (Class)	Variables

private static int gravity = 3;



CONSTANTS

• Private :	access	modifier,	as	usual

• Static :	class	variable

• final :	constant	(cannot	change	the	value).		

private static final int GRAVITY = 3;

*Naming	standard	for	final	fields	is	ALL	CAPITALS.
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Static	Methods

• Java	supports	static	methods	
as	well	as	static	variables.	

• Static	methods
– have	the staticmodifier	in	their	declarations
– should	be	invoked	with	the	class	name,	
without	the	need	for	creating	an	instance	of	the	class,	
as	in:

ClassName.methodName(args)



Static	Methods

A	common	use	for	static	methods	is	to	access	static	fields.

– E.g.	we	could	add	a	static	method	to	the BouncingBall class	to	
access	the gravity static	field:

public static int getGravity() 
{ 

return gravity; 
} 

Write	code	to	access	this	
static	method	and	store	it	in	

an	integer	variable	g
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Writing	class	documentation

• Your	own	classes	should	be	documented	the	
same	way	library	classes	are.

• Other	people	should	be	able	to	use	your	class	
without	reading	the	implementation.

• Make	your	class	a	'library	class'!



Example of	Library	Documentation



Elements	of	documentation	- class

Documentation	for	a	class should	include:

• class	name
• comment describing	the	overall	purpose	and	
characteristics	of	the	class

• version	number
• authors’	names
• constructor documentation	(for	all	constructors)
• method documentation	(for	all	methods)



Elements	of	documentation	-methods

The	documentation	for	each	constructor and	method
should	include:

• method	name
• return	type
• return	value	description
• method purpose and	function	description	
• parameter	names	and	types
• parameter	description (for	each	parameter)



Javadoc

• javadoc comment - start	symbol:		
/**

• Immediately	before	a…

– class	declaration	is	read	as	a	class	comment.
– method	signature	is	read	as	a	method	comment.

• Other	special	key	symbols	for	formatting	documentation	
include:

@version
@author
@param
@return



Javadoc

Class	comment:

/**
* The Responder class represents a response
* generator object. It is used to generate an 
* automatic response.
* 
* @author     Michael Kölling and David J. Barnes
* @version    1.0  (30.Mar.2006)
*/



Javadoc

Method comment:

/**
* Read a line of text from standard input (the text
* terminal), and return it as a set of words.
*
* @param prompt  A prompt to print to screen.
* @return A set of Strings, where each String is
*         one of the words typed by the user
*/

public HashSet<String> getInput(String prompt) 
{

...
}
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The	danger	lurking	
within!



Calculated	data
public class Employee

{

private double salary;

private double deductions;

private double netSalary;
:

:

public void calculateNetSalary()
{

netSalary = salary – deductions;

}

public void setSalary(double salary)
{

this.salary = salary;   

}

} NB:	setSalary()	
doesn’t	recalculate	the	net	salary?		

!!!	DATA	INTEGRITY	WARNING	!!!

• netSalary field can	contain	stale	data.

• Don’t	store	netSalary in	a	field

• Calculate	this	when	needed	instead

• calculateNetSalary()

netSalary is	calculated	data.



Calculated	data
public class Employee
{

private double salary;

private double deductions;

:

public double calculateNetSalary()
{

return (salary – deductions);

}

public void setSalary(double salary)

{
this.salary = salary;   

}

}

netSalary field	
• is	no	longer	declared.

calculateNetSalary()
• now	returns	the	result	

of	the	calculation.

No	calculated	data	is	stored,	
so	no	stale	data!



Summary
1. Static	Variables

– Class	variables
– Shared	between	multiple	instances
– Add	final	turns	it	into	a	CONSTANT

2. Static	Methods
– Used	for	accessing	static	variables

3. Javadoc
– Modifying	comments	means	we	can	run	the	Javadoc	compiler	on	our	code	to	

generate	the	documentation	similar	to	Java	library	documentation

4. Storing	calculated	data
– Don’t!
– Write	a	method	instead	to	calculate	at	runtime
– Avoids	STALE	data




