Some miscellaneous concepts

Static Variables & Methods, Javadoc and Calculated Data

Produced Dr. Siobhan Drohan
by: Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

@ Waterford Institute of Technology Department of Computing and Mathematics
)

_5 INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

Topic List

1. Static Variables

2. Static Methods
3. Javadoc

4. Storing calculated data

Instance vs Static (Class) Variables

Instance Static
Multiple objects created from For variables that are common
the same class blueprint, to all objects (instances)

» each have their own distinct * Use the static modifier.

copies of instance variables.
Fields that have
the static modifier in their
declaration are called:
* static fields

e oOr
class variables.

https://docs.oracle.com/javase/tutorial/java/javaOQ/classvars.html

Instance vs Static (Class) Variables

is instance of...

is instance of...

is instance of...

CONSTANTS

private static(final) int GRAVITY = 3;

 Private :access modifier, as usual

e Static :class variable

: constant (cannot change the value).

*Naming standard for final fields is ALL CAPITALS.

Topic List

1. Static Variables

2. Static Methods

3. Javadoc

4. Storing calculated data

Static Methods

* Java supports static methods
as well as static variables.

e Static methods

— have the static modifier in their declarations

— should be invoked with the class nhame,
without the need for creating an instance of the class,
as in:

ClassName.methodName(args)

Static Methods

public static int getGravity ()
{

return gravity;

is instance of...

Write code to access this
static method and store it in
an integer variable g

-

A common usk for static methods/is to access static fields.

— E.g. we coulld add a static method to the BouncingBall class to
access the gravity static field:

Topic List

1. Static Variables

2. Static Methods

4. Storing calculated data

Writing class documentation

=]ava Documentation

* Your own classes should be documented the
same way library classes are.

* Other people should be able to use your class
without reading the implementation.

* Make your class a 'library class'!

Example of Library Documentation

E String (Java Platform SE© X /‘
. . . el J . :
& C' | @ Secure | https://docs.oracle.com/javase/8/docs/api/java/lang/String.html ::_- lava Documentatlon
OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP
PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3
java.lang

E String (Java Platform SE = X

java.lang.Object

java.lang.String & (€ ‘ & Secure \ https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
—
All Implemented Interfaces: ‘\ Method Summary
Serializable, CharSequence, Comparable<String>
_ Static Methods Instance Methods Concrete Methods Deprecated Methods
Modifier and Type Method and Description
public final class String char charAt(int index)
extends Obj ect Returns the char value at the specified index.
implements Serializable, Comparable<String>, Ch) . o
P ! P 9> int codePointAt(int index)

The String class represents character strings. All string Returns the character (Unicode code point) at the specified index.

int codePointBefore(int index)
Strlngs are constant; their values cannot be changed aft Returns the character (Unicode code point) before the specified index.
immutable they can be shared. For example: .
int codePointCount(int beginIndex, int endIndex)
String str = "abc"; Returns the number of Unicode code points in the specified text range of this String.
int compareTo(String anotherString)

. . Compares two strings lexicographically.
is equivalent to:

int compareToIgnoreCase(String str)
char data[] = {'a', 'b', 'c'}; Compares two strings lexicographically, ignoring case differences.
String str = new String(data); String concat(String str)

Concatenates the specified string to the end of this string.

boolean contains (CharSequence s)

Returns true if and only if this string contains the specified sequence of char values.

Flements of documentation - class

=]ava Documentation
Documentation for a class should include:

e class name

« comment describing the overall purpose and
characteristics of the class

e version number

* authors’ names

e constructor documentation (for all constructors)
 method documentation (for all methods)

Elements of documentation - methods

=]ava Documentation

The documentation for each constructor and method
should include:

* method name

* return type

* return value description

* method purpose and function description

e parameter names and types

e parameter description (for each parameter)

Javadoc

=]ava Documentation

* javadoc comment - start symbol:

/**
 Immediately before a...

— class declaration is read as a class comment.
— method signature is read as a method comment.

e Other special key symbols for formatting documentation
include:
@version
@author

@param
@return

Javadoc

Class comment:

>

* The Responder class represents a response
* generator object. It is used to generate an

* automatic response.
*

*/dauthor
@wversion

*/

Michael Kolling and David J. Barnes
1.0 (30.Mar.2006)

=2 Java Documentatior

Javadoc

=’Javal
Method comment:

oD

Read a line of text from standard input (the text
terminal), and return it as a set of words.

*
*
*
e prompt A prompt to print to screen.
*\dreturn/A set of Strings, where each String is
= one of the words typed by the user
*/
public HashSet<String> getInput (String prompt)

{

Topic List

1. Static Variables
2. Static Methods

3. Javadoc

4. Storing calculated data

The danger lurking
within!

netSalary is calculated data.

Calculated data

public class Employee
{

private double salary; 111 DATA INTEGRITY WARNING !!!

private double deductions;

private double netSalary;
* netSalary field can contain stale data.

 Don’t store netSalary in a field
public void calculateNetSalary ()

{
netsalary — salary - deduction: ® Calculate this when needed instead

}

e calculateNetSalary()
public void setSalary (double salary)

{

this.salary = salary;

} NB: setSalary()
doesn’t recalculate the net salary?

Calculated data

public class Employee
{

private double salary;

netSalary field

private double deductions;]
* isno longer declared.

public double calculateNetSalary () caIcuIateNetSaIary()

{ * now returns the result
return (salary - deductions); Of the calculation.

}

public void setSalary(double salary)
{

this.salary = salary; No calculated data is stored,

} so no stale data!
|

Summary

1. Static Variables
— Class variables
— Shared between multiple instances
— Add final turns it into a CONSTANT

2. Static Methods
— Used for accessing static variables

3. Javadoc

— Modifying comments means we can run the Javadoc compiler on our code to
generate the documentation similar to Java library documentation

4. Storing calculated data
— Don’t!
— Write a method instead to calculate at runtime
— Avoids STALE data

Any
Questions?

