
Some	miscellaneous	concepts

Produced	
by:

Department	of	Computing	and	Mathematics
http://www.wit.ie/

Static	Variables	&	Methods,	Javadoc	and	Calculated	Data

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor
Dr. Frank	Walsh

Topic	List

1. Static	Variables

2. Static	Methods

3. Javadoc

4. Storing	calculated	data

Instance vs	Static (Class)	Variables

Instance
Multiple	objects	created	from	
the	same	class	blueprint,	
• each	have	their	own	distinct	

copies	of instance	variables.

Static
For	variables that	are	common	
to	all	objects	(instances)
• Use	the staticmodifier.	

Fields	that	have	
the static modifier	in	their	
declaration	are	called:
• static	fields
• or

class	variables.

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

Instance vs	Static (Class)	Variables

private static int gravity = 3;

CONSTANTS

• Private :	access	modifier,	as	usual

• Static :	class	variable

• final :	constant	(cannot	change	the	value).		

private static final int GRAVITY = 3;

*Naming	standard	for	final	fields	is	ALL	CAPITALS.

Topic	List

1. Static	Variables

2. Static	Methods

3. Javadoc

4. Storing	calculated	data

Static	Methods

• Java	supports	static	methods	
as	well	as	static	variables.	

• Static	methods
– have	the staticmodifier	in	their	declarations
– should	be	invoked	with	the	class	name,	
without	the	need	for	creating	an	instance	of	the	class,	
as	in:

ClassName.methodName(args)

Static	Methods

A	common	use	for	static	methods	is	to	access	static	fields.

– E.g.	we	could	add	a	static	method	to	the BouncingBall class	to	
access	the gravity static	field:

public static int getGravity()
{

return gravity;
}

Write	code	to	access	this	
static	method	and	store	it	in	

an	integer	variable	g

Topic	List

1. Static	Variables

2. Static	Methods

3. Javadoc

4. Storing	calculated	data

Writing	class	documentation

• Your	own	classes	should	be	documented	the	
same	way	library	classes	are.

• Other	people	should	be	able	to	use	your	class	
without	reading	the	implementation.

• Make	your	class	a	'library	class'!

Example of	Library	Documentation

Elements	of	documentation	- class

Documentation	for	a	class should	include:

• class	name
• comment describing	the	overall	purpose	and	
characteristics	of	the	class

• version	number
• authors’	names
• constructor documentation	(for	all	constructors)
• method documentation	(for	all	methods)

Elements	of	documentation	-methods

The	documentation	for	each	constructor and	method
should	include:

• method	name
• return	type
• return	value	description
• method purpose and	function	description	
• parameter	names	and	types
• parameter	description (for	each	parameter)

Javadoc

• javadoc comment - start	symbol:		
/**

• Immediately	before	a…

– class	declaration	is	read	as	a	class	comment.
– method	signature	is	read	as	a	method	comment.

• Other	special	key	symbols	for	formatting	documentation	
include:

@version
@author
@param
@return

Javadoc

Class	comment:

/**
* The Responder class represents a response
* generator object. It is used to generate an
* automatic response.
*
* @author Michael Kölling and David J. Barnes
* @version 1.0 (30.Mar.2006)
*/

Javadoc

Method comment:

/**
* Read a line of text from standard input (the text
* terminal), and return it as a set of words.
*
* @param prompt A prompt to print to screen.
* @return A set of Strings, where each String is
* one of the words typed by the user
*/

public HashSet<String> getInput(String prompt)
{

...
}

Topic	List

1. Static	Variables

2. Static	Methods

3. Javadoc

4. Storing	calculated	data

The	danger	lurking	
within!

Calculated	data
public class Employee

{

private double salary;

private double deductions;

private double netSalary;
:

:

public void calculateNetSalary()
{

netSalary = salary – deductions;

}

public void setSalary(double salary)
{

this.salary = salary;

}

} NB:	setSalary()	
doesn’t	recalculate	the	net	salary?		

!!!	DATA	INTEGRITY	WARNING	!!!

• netSalary field can	contain	stale	data.

• Don’t	store	netSalary in	a	field

• Calculate	this	when	needed	instead

• calculateNetSalary()

netSalary is	calculated	data.

Calculated	data
public class Employee
{

private double salary;

private double deductions;

:

public double calculateNetSalary()
{

return (salary – deductions);

}

public void setSalary(double salary)

{
this.salary = salary;

}

}

netSalary field	
• is	no	longer	declared.

calculateNetSalary()
• now	returns	the	result	

of	the	calculation.

No	calculated	data	is	stored,	
so	no	stale	data!

Summary
1. Static	Variables

– Class	variables
– Shared	between	multiple	instances
– Add	final	turns	it	into	a	CONSTANT

2. Static	Methods
– Used	for	accessing	static	variables

3. Javadoc
– Modifying	comments	means	we	can	run	the	Javadoc	compiler	on	our	code	to	

generate	the	documentation	similar	to	Java	library	documentation

4. Storing	calculated	data
– Don’t!
– Write	a	method	instead	to	calculate	at	runtime
– Avoids	STALE	data

