
More	Sophisticated	Behaviour

Produced	
by:

Department	of	Computing	and	Mathematics
http://www.wit.ie/

Technical	Support	System	V3.0

Dr.	Siobhán Drohan
Mr.	Colm	Dunphy
Mr.	Diarmuid	O’Connor
Dr. Frank	Walsh

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

Recap:	Technical	Support	System	V2

• A	console	based,	textual	dialog	system.

• In	this	version,	the	system	provides	a	random response	
from	a	list	of	pre-defined	responses	e.g.:

– "That	sounds	interesting.	Tell	me	more..."
– "I	need	a	bit	more	information	on	that."
– "Have	you	checked	that	you	do	not	have	a	dll conflict?"
– "That	is	explained	in	the	manual.	Have	you	read	the	manual?“
– "	That's	not	a	bug,	it's	a	feature!"
– "Could	you	elaborate	on	that?“
– etc.

Technical	Support	System	V2

Class	Diagram	V2

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

Technical	Support	System	V3

• A	console	based,	textual	dialog	system.

• Based	on	the	user	input,	
– the	system	provides	a	context-sensitive,	
generated	response	from	a	list	of	pre-defined	
responses.		

– If	the	system	cannot	find	a	suitable	generated	
response,	it	returns	a	random one.

Technical	Support	System	V3

Context	
Sensitive

Random

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

How do	we	influence	the	generated	response?

• What	if	we	had	a	set	of	words
– that	are	likely	to	occur	in	a	typical	question?

• What	if	we	then	associated these	words	
– with	particular	responses?

• Then,	if	the	user	input	contains	a	known	word,
– generate	a	related	response!

Key Value

Word Response

ArrayList

Q:	Can	we	use	an	ArrayList for	this	purpose?
i.e.	Will	it	let	us	store	“key=value”	pairs?

A:	No!		
i.e.	We	need	a	different	data	structure.

A	Map stores	“key=value”	pairs

RECAP:	Java’s	Collections Framework

Talk	8 Talk	12

in	Java

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

Maps

• Maps	are	collections	
– that	contain	pairs	of	values.

• Pairs consist	of	:
– key
– value.

• Lookup works	by	supplying	a	key,	
and	retrieving	a	value.
– E.g.	telephone	book
• use	the	name to	look	up	a	phone	number.

Key Value

Word Response

Using	Maps

• A	MAP with	String	keys	&	String	values.

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

ArrayList VsMap

ArrayList
1. each	entry	stores	

one object

2. you	use	an	integer	index	
to	lookup the	object

Map
1. each	entry	has	a	

pair of	objects	(key=value).

2. you	use	the	key	object	
to	lookup the	value	object

More	on	Map
• Maps	are	ideal	for	one-way	lookup	using	the	key.	

• Using	Maps	to	Look	up	a	value	associated	with	a	key	is	easy!
– However,	reverse	lookup	(finding	a	key	for	a	value)	

is	not	so	easy.	
• E.g.	looking	up	a	number	in	the	phonebook,	to	find	the	persons	name

• A	map	cannot	contain	duplicate	keys;	
– A	key	can	map	to	at	most	one	value.

• Java	provides	4	Map	classes:	
– HashMap,	HashTable,	TreeMap &	Linked	HashMap
– We	will	use	the	HashMap class.

HashMap Methods

Using	HashMap
HashMap <String, String> phoneBook = new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");
phoneBook.put("Lisa Jones", "(402) 4536 4674");
phoneBook.put("William H. Smith", "(998) 5488 0123");

String phoneNumber = phoneBook.get("Lisa Jones");
System.out.println(phoneNumber);

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

Console Output:

(402) 4536 4674

Lookup

HashMap in	Tech	Support	System	V3

In	the	Responder class,	
we	will	now	use	HashMap to	store	“Key-Value”	pairs	
for	context-sensitive	responses	e.g.

Key Value

windows																					This	is	a	known	bug	to	do	with	the	Windows	operating	system.	Please	report	it	
to	Microsoft.	There	is	nothing	we	can	do	about	this.

slow I	think	this	has	to	do	with	your	hardware.	Upgrading	your	processor	should	
solve	all	performance	problems.	Have	you	got	a	problem	with our	software?

bug Well,	you	know,	all	software	has	some	bugs.	But	our	software	engineers are	
working	very	hard	to	fix	them.	Can	you	describe	the	problem	a	bit further?

performance Performance	was	quite	adequate	in	all	our	tests.	Are	you	running any	other	
processes	in	the	background?

private	void	fillResponseMap()
{
responseMap.put("crash",	

"Well,	it	never	crashes	on	our	system.	It	must	have	something\n"	+
"to	do	with	your	system.	Tell	me	more	about	your	configuration.");

responseMap.put("crashes",	
"Well,	it	never	crashes	on	our	system.	It	must	have	something\n"	+
"to	do	with	your	system.	Tell	me	more	about	your	configuration.");

responseMap.put("slow",	
"I	think	this	has	to	do	with	your	hardware.	Upgrading	your	processor\n"	+
"should	solve	all	performance	problems.	Have	you	got	a	problem	with\n"	+
"our	software?");

responseMap.put("performance",	
"Performance	was	quite	adequate	in	all	our	tests.	Are	you	running\n"	+
"any	other	processes	in	the	background?");

responseMap.put("bug",	
"Well,	you	know,	all	software	has	some	bugs.	But	our	software	engineers\n"	+
"are	working	very	hard	to	fix	them.	Can	you	describe	the	problem	a	bit\n"	+
"further?");

responseMap.put("buggy",	
"Well,	you	know,	all	software	has	some	bugs.	But	our	software	engineers\n"	+
"are	working	very	hard	to	fix	them.	Can	you	describe	the	problem	a	bit\n"	+
"further?");

responseMap.put("windows",	
"This	is	a	known	bug	to	do	with	the	Windows	operating	system.	Please\n"	+
"report	it	to	Microsoft.	There	is	nothing	we	can	do	about	this.");

//		and	so	on…
}

V3.0	Responder	changes	(in	red)
private	HashMap<String,	String>	responseMap;

fillResponseMap()

• Whenever	someone	enters	the	word	“crashes”,	
– we	can	do	a	lookup and	print	the	attached	response.

responseMap.put (
"crashes",		

"Well,	it	never	crashes	on	our	system.	It	must	have	something\n"	
+	"to	do	with	your	system.	Tell	me	more	about	your	configuration.");

import	java.util.HashMap;
import	java.util.ArrayList;
import	java.util.Random;

public	class	Responder
{
//	Used	to	map	key	words	to	responses.
private	HashMap<String,	String>	responseMap;

//	Default	responses	to	use	if	we	don't	recognise	a	word.
private	ArrayList<String>	defaultResponses;

//	For	random	responses	
private	Random	randomGenerator;

public	Responder()
{
responseMap =	new	HashMap<String,	String>();
fillResponseMap();
defaultResponses =	new	ArrayList<String>();
fillDefaultResponses();
randomGenerator =	new	Random();

}

V3.0	Responder	
changes	(in	red)

private	void	fillResponseMap()
{
responseMap.put("crash",	

"Well,	it	never	crashes	on	our	system.	It	must	have	something\n"	+
"to	do	with	your	system.	Tell	me	more	about	your	configuration.");

responseMap.put("crashes",	
"Well,	it	never	crashes	on	our	system.	It	must	have	something\n"	+
"to	do	with	your	system.	Tell	me	more	about	your	configuration.");

responseMap.put("slow",	
"I	think	this	has	to	do	with	your	hardware.	Upgrading	your	processor\n"	+
"should	solve	all	performance	problems.	Have	you	got	a	problem	with\n"	+
"our	software?");

responseMap.put("performance",	
"Performance	was	quite	adequate	in	all	our	tests.	Are	you	running\n"	+
"any	other	processes	in	the	background?");

responseMap.put("bug",	
"Well,	you	know,	all	software	has	some	bugs.	But	our	software	engineers\n"	+
"are	working	very	hard	to	fix	them.	Can	you	describe	the	problem	a	bit\n"	+
"further?");

responseMap.put("buggy",	
"Well,	you	know,	all	software	has	some	bugs.	But	our	software	engineers\n"	+
"are	working	very	hard	to	fix	them.	Can	you	describe	the	problem	a	bit\n"	+
"further?");

responseMap.put("windows",	
"This	is	a	known	bug	to	do	with	the	Windows	operating	system.	Please\n"	+
"report	it	to	Microsoft.	There	is	nothing	we	can	do	about	this.");

//		and	so	on…
}

V3.0	Responder	changes	(in	red)
private	HashMap<String,	String>	responseMap;

private	void	fillDefaultResponses() {

defaultResponses.add("That	sounds	odd.	Could	you	describe	that	problem	in	more	detail?");
defaultResponses.add("No	other	customer	has	ever	complained	about	this	before.	\n"	+

"What	is	your	system	configuration?");
defaultResponses.add("That	sounds	interesting.	Tell	me	more...");
defaultResponses.add("I	need	a	bit	more	information	on	that.");
defaultResponses.add("Have	you	checked	that	you	do	not	have	a	dll conflict?");
defaultResponses.add("That	is	explained	in	the	manual.	Have	you	read	the	manual?");
defaultResponses.add("Your	description	is	a	bit	wishy-washy.	Have	you	got	an	expert\n"	+

"there	with	you	who	could	describe	this	more	precisely?");
defaultResponses.add("That's	not	a	bug,	it's	a	feature!");
defaultResponses.add("Could	you	elaborate	on	that?");

}

private	String	pickDefaultResponse()
{
//	Pick	a	random	number	for	the	index	in	the	default	response	list.
//	The	number	will	be	between	0	(inclusive)	and	the	size	of	the	list	(exclusive).
int index	=	randomGenerator.nextInt(defaultResponses.size());
return	defaultResponses.get(index);

}

V3.0	Responder	changes	(in	red)

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

Tokenizing	Strings
• We	have	a	HashMap

– containing	a	series	of	words	with	appropriate	responses.

• Now	we	need	to	search	the	String	of	words	
the	user	entered	on	the	console	
– to	see	if	they	typed	in	any	of	the	words	stored	in	the	HashMap.

• We	need	to	“split”	the	String	of	words	entered	by	the	user
– into	individual	words	
– and	store	them	in	a	collection	(e.g.	Array)	

• Tokenizing	Strings.

• We	need	a	new	data	structure	to	store	these	words	just	once

A	Set	stores	uniques values

Set

• A	Set is	a	collection	
– that	stores	each	individual	element	
at	most	once
• (i.e.	unique	elements).		

• It	does	not	maintain	any	specific	order.

• The	coding	for	Set
is	very	similar	to	ArrayList coding.

Using	sets

import java.util.HashSet;
import java.util.Iterator;
...

HashSet<String> mySet = new HashSet<String>();

mySet.add("one");
mySet.add("two");

mySet.add("three");

Iterator<String> it = mySet.iterator();

while(it.hasNext()) {
call it.next() to get the next object

do something with that object

}

Compare this
to ArrayList

code!

What	is	the	Difference between	Set and	List?

List	(e.g.	ArrayList):
• keeps	all	elements	entered	in	the	desired	order,	
• provides	access	to	elements	by	index
• can	contain	the	same	element	multiple	times.

Set	(e.g.	HashSet):
• No	specific	order
• ensures	each	element	is	in	the	set	at	most	once	

– (entering	an	element	a	second		time	has	no	effect).

Returning	to	Tokenizing	Strings

InputReader class

//	V2 Code
import	java.util.Scanner;

public	class	InputReader{

Scanner	input;

public	InputReader(){
input	=	new	Scanner(System.in);	

}

/**
*	Read	a	line	of	text	from	standard	input	(the	text	terminal),
*	and	return	it	as	a	String.
*
*	@return		A	String	typed	by	the	user.
*/
public	String	getInput()	{

System.out.print(">	");																//	print	prompt
String	inputLine =	input.nextLine().trim().toLowerCase();	
return	inputLine;

}
}

In	V3,	we	modify	this	code	
to	split	out	the	input	(stored	in	inputLine)	

into	a	primitive	array	of	Strings	>>>

V2	Code

//	V3	Code
import	java.util.Scanner;

public	class	InputReader{

Scanner	input;

public	InputReader(){
input	=	new	Scanner(System.in);	
}
public	HashSet<String>	getInput()
{
System.out.print(">	");																//	print	prompt
String	inputLine =	input.nextLine().trim().toLowerCase();

String[]	wordArray =	inputLine.split("	");		//	split	at	spaces

//	add	words	from	array	into	hashset
HashSet<String>	words =	new	HashSet<String>();

for	(String	word	:	wordArray)	{
words.add(word);

}
return	words;

}
}

Changes	for	V3

1)	Split	up	the	inputLine object	
at	spaces,	storing	each	word	in	
a	wordArray of	String[]

2)	Declare	&	initialise	words
as	a	HashSet of	String	

3)	For	each	word in	the	wordArray,	
add	that	word to	the	words HashSet

4)	Return	the	HashSet of	words

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

import	java.util.HashMap;
import	java.util.HashSet;
import	java.util.ArrayList;
import	java.util.Iterator;
import	java.util.Random;

public	class	Responder
{
//	Used	to	map	key	words	to	responses.
private	HashMap<String,	String>	responseMap;

//	Default	responses	to	use	if	we	don't	recognise	a	word.
private	ArrayList<String>	defaultResponses;

private	Random	randomGenerator;

public	Responder()
{
responseMap =	new	HashMap<String,	String>();
fillResponseMap();
defaultResponses =	new	ArrayList<String>();
fillDefaultResponses();
randomGenerator =	new	Random();

}

V3.0	Responder	Class

MORE changes	(in	red)	
to	handle	a	HashSet of	Strings	

passed	into	the	generateResponse()	
method.

public	String	generateResponse (HashSet<String>	words)
{
Iterator<String>	it	=	words.iterator();

while(it.hasNext())	{

String	word	=	it.next();
String	response	=	responseMap.get(word);
if(response	!=	null)	{
return	response;

}
}
//	If	we	get	here,	none	of	the	words	from	the	input	line	were	recognized.
//	In	this	case	we	pick	one	of	our	default	responses	(what	we	say	when
//	we	cannot	think	of	anything	else	to	say...)
return	pickDefaultResponse();

}

V3.0	Responder	Class

MORE changes	(in	red)	
to	handle	a	HashSet of	Strings	

passed	into	the	generateResponse()	
method.

Topic	List
1. Recap:	Technical	Support	System	V2

2. Technical	Support	System	V3
– Overview

• 3	classes:
– Responder
– InputReader
– SupportSystem

3. Class	Development
– Responder	class	

• Generating	a	related	response
• ArrayList
• Map	and	HashMap 

– InputReader class
• Tokenizing	Strings
• Set	and	HashSet 

– Responder	class
• Finishing	the	class 

– SupportSystem class	
• A	small	change.

//	V2 code
public	class	SupportSystem
{
private	InputReader reader;
private	Responder	responder;

public	SupportSystem()	{
reader	=	new	InputReader();
responder	=	new	Responder();

}
public	static	void	main(String[]	argvs){

SupportSystem app	=	new	SupportSystem();
app.start();

}

public	void	start(){
printWelcome();
String	input	=	reader.getInput();
while(!	input.startsWith("bye"))	{

String	response	=	responder.generateResponse();
System.out.println(response);
input	=	reader.getInput();

}
printGoodbye();

}

In	V3	
we	change	this	class,	
mainly	in	the	start()	

method	>>>

import	java.util.HashSet;
public	class	SupportSystem
{
private	InputReader reader;
private	Responder	responder;

public	SupportSystem()	{
reader	=	new	InputReader();
responder	=	new	Responder();

}
public	static	void	main(String[]	argvs){

SupportSystem app	=	new	SupportSystem();
app.startSupport();

}

public	void	startSupport(){
printWelcome();
HashSet<String>	input =	reader.getInput();
while(!input.contains("bye"))	{

String	response	=	responder.generateResponse(input);
System.out.println(response);	
input	=	reader.getInput();

}
printGoodbye();

}

V3	Uses	a	
HashSet of	Strings	
called	input which	is	

passed	to	
generateResponse()

V3	Code

startSupport()	
replaces	start()

